

Course Welcome and Introduction

TMDL Academy – Foundations Training
U.S. EPA Office of Wetlands, Oceans, and Watersheds

Mission of the TMDL Academy

- Build participant knowledge and skills needed to develop TMDLs that:
 - include all required elements for EPA approval; and
 - support successful restoration of impaired waters

Objective of the TMDL Foundations Training

 Introduce basic TMDL concepts and enable participants to understand the process for developing TMDLs

Course Activities and Exercises

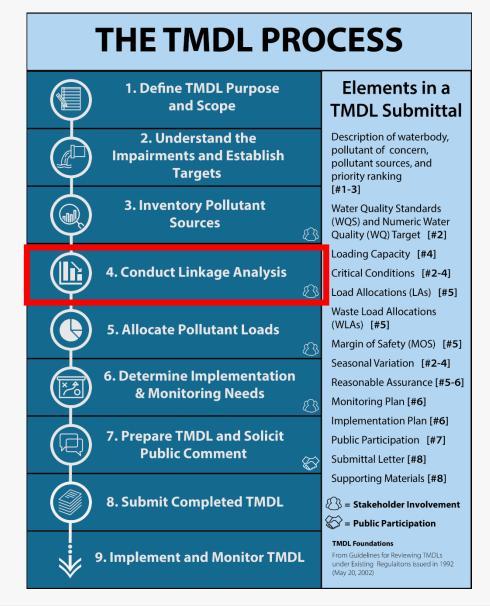
- Activities are spread throughout the course and are designed to:
 - Reinforce key concepts
 - Allow for direct participation
- Exercises are included in each module for attendees to:
 - Work through the components of a TMDL in an example scenario
 - Understand best practices and important factors for drafting TMDLs

8-Session Agenda

	Tuesday	Thursday
Week 1	Define TMDL Purpose and Scope	Understand the Impairments and Establish Targets
Week 2	Inventory Pollutant Sources	Plan the Linkage Analysis
Week 3	Execute the Linkage Analysis	Allocate Pollutant Loads
Week 4	Determine Implementation & ** Monitoring Needs	Prepare and Submit the TMDL Document

Execute the Linkage Analysis

TMDL Academy – Foundations Training
U.S. EPA Office of Wetlands, Oceans, and Watersheds



* Execute the Linkage Analysis – Session 5

Module Objectives

Provide participants with an understanding of:

- Why and how models can be used for TMDL development and the modeling process
- The Load Duration Curve as an example method for TMDL development and how to prepare a Load Duration Curve

Today's Agenda – Session 5

Training Session #5

Module

Presentations

Exercises/Activities

Execute the Linkage Analysis

Modeling Introduction (20 minutes live; 20 minutes pre-recorded)

Load Duration Curve (30 minutes)

Model Selection Activity (20 minutes)

Load Duration Curve Exercise (15 minutes)

Modeling Introduction

TMDL Academy – Foundations Training
U.S. EPA Office of Wetlands, Oceans, and Watersheds

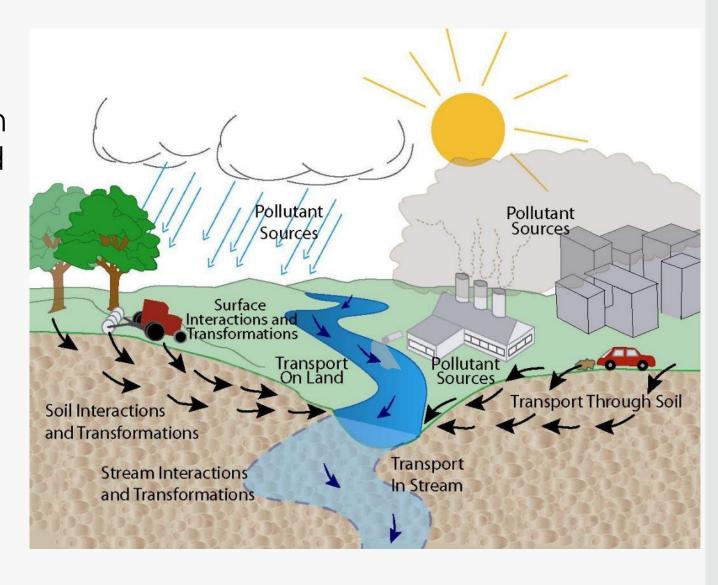
Lesson Overview – Modeling Introduction

Introduction

Understand why and how models are used for TMDL development

Process Description

Learn the modeling process



Group activity to identify potential modeling methods for TMDL development scenarios

What is a Model?

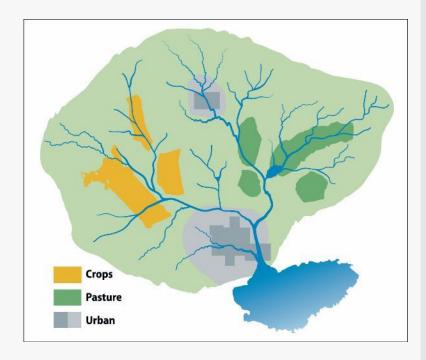
 A mathematical representation of pollutant fate, transport, and degradation within a watershed and/or waterbody

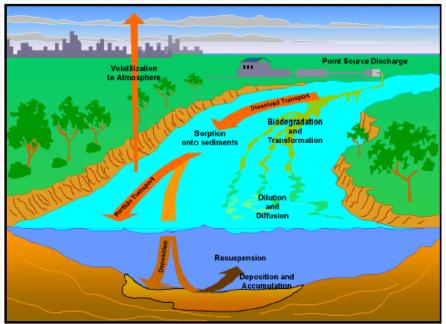
What is a Model?

- A model can consist of a single equation or series of equations to approximate one or more environmental conditions
- Run with a spreadsheet or computer program

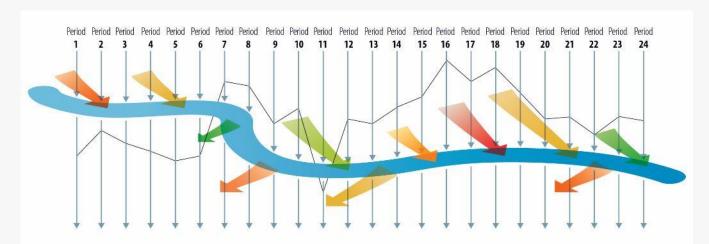
Simple

- Land Use Export Coefficients
- Event Mean Concentrations
- Empirical Equations
 - Universal Soil Loss Equation, USLE

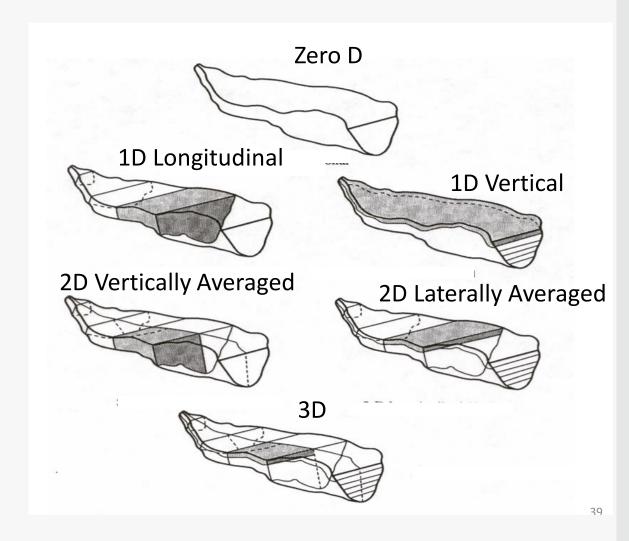

Complex


- Mechanistic/Process Models
 - HSPF, SWAT, SWMM
 - WASP, CE-QUAL-W2, EFDC
- Advanced Statistical Models
 - SPARROW

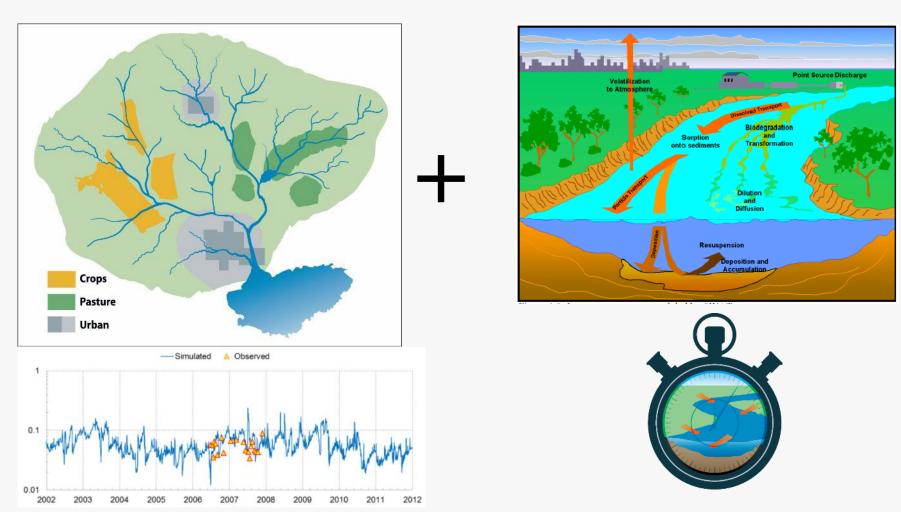
- Watershed Models
 - Simulate runoff and pollutant loading from the landscape (loads into a waterbody)
 - May include a basic representation of waterbody conditions
- Waterbody Models
 - Detailed representation of water quality in rivers, lakes, embayments, etc. (response to loading)



- Static
 - Depict a snapshot in time
 - Steady-state conditions with constant inputs and outputs
- Time-Variable (Dynamic)
 - Simulate changing conditions across months, seasons, years, etc.
 - Variable inputs and outputs



Types of Models


- Waterbody models can be classified according to the spatial representation of a waterbody, ranging from:
 - Zero-Dimensional (Zero D) –
 entire waterbody is simulated as
 a single unit with no variability
 - Three-Dimensional (3D) –
 waterbody is divided into
 segments that capture
 longitudinal, lateral, and vertical
 variability

Linked Models

Multiple models may be combined to meet objectives and needs

Why are Models Used?

- Help us understand complex systems
- Confirm existing conceptual views or highlight deficiencies in our conceptual understanding
- Afford the opportunity to refine and improve our qualitative and quantitative understanding of a particular system or process
- Can be cheaper and faster than extensive physical testing options

1. Calculate **Loading Capacity**

2. Quantify Pollutant Sources

3. Evaluate Load **Reduction Scenarios**

- 1. Calculate Loading Capacity
 - C/1

2. Quantify Pollutant Sources

3. Evaluate Load Reduction Scenarios

- Models can simulate pollutant concentrations and/or values of response parameters under alternative pollutant loads
- Models can estimate the pollutant load that results in attainment of the numeric water quality target

- Calculate Loading Capacity
- 2. Quantify Pollutant Sources
- 3. Evaluate Load Reduction Scenarios

- Models can simulate existing pollutant loads from nonpoint sources, regulated stormwater sources (e.g., MS4s), and CAFOs
- Models can inform pollutant allocations and TMDL implementation planning

- Calculate Loading Capacity
- 2. Quantify and Compare Pollutant Sources
- 3. Evaluate Load Reduction Scenarios

- Models can simulate the effects of reduced point source discharge and nonpoint source management practices on water quality
- Modeled scenarios can further guide allocations, TMDL implementation planning, and support reasonable assurance

Limitations of Models

- Example limitations of models:
 - Models can be constrained by data availability, computational limits, assumptions, and knowledge gaps
 - Models will never be a perfect representation of reality
- Despite such limitations, models can still capture key elements of a system and serve as useful tools to inform decisionmaking

Water Quality Modeling

Water Quality
Modeling

Step 1 Prepare QAPP Step 2 Compile Data & Configure Model Step 3
Calibrate &
Evaluate Model

Step 4 Accept & Apply Model Step 5 Document Model

To develop a water quality model:

Step 1.

Prepare Quality Assurance Project Plan

Step 2.

Compile Data & Configure Model

Step 3.

Calibrate & Evaluate Model

Step 4.

Accept & Apply Model

Step 5.

Document the Model

黨

Activity 5.1: Choose a Model (Resources)

The following websites contain resources for water quality modeling and analysis:

- 1. EPA Surface Water Quality Modeling Training https://www.epa.gov/waterdata/surface-water-quality-modeling-training
- 2. EPA Assessment of Surface Water Model Maintenance and Support Status https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHEERL&dirEntryld=342391

Links to other resources:

EPA Surface Water Models to Assess Exposures https://www.epa.gov/ceam/surface-water-models-assess-exposures

EPA Review of Watershed and Water Quality Tools for Nutrient Fate and Transport https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=CESER&dirEntryId=348257

Load Duration Curve

TMDL Academy – Foundations Training
U.S. EPA Office of Wetlands, Oceans, and Watersheds

Lesson Overview – Load Duration Curve

Introduction

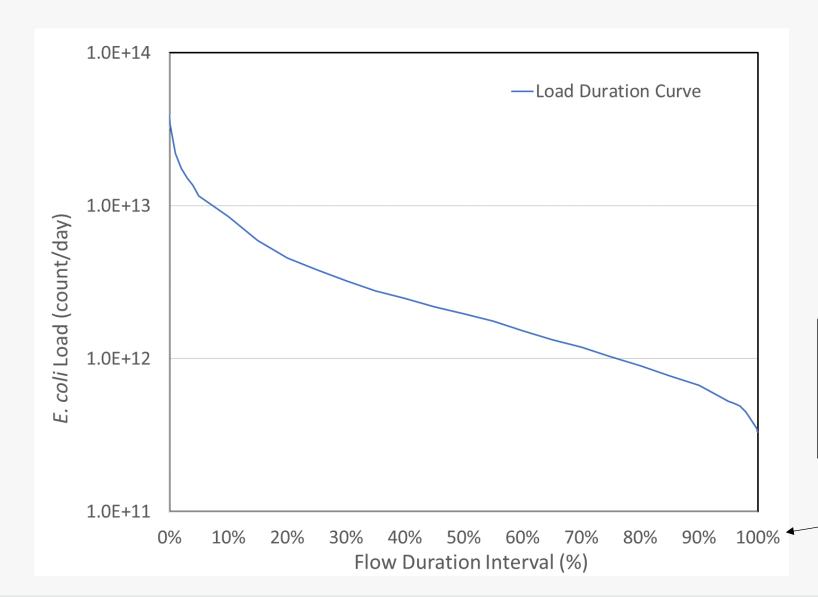
Describe the Load Duration Curve and how it is used

Process Description

Learn the process for developing a Load Duration Curve

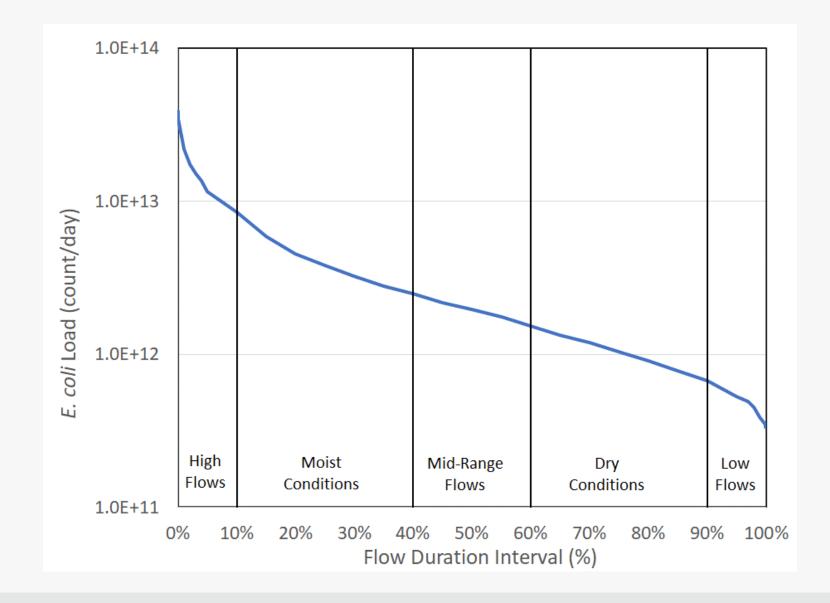
Exercise 5.1

Prepare a Load Duration Curve for the example Opal River TMDL

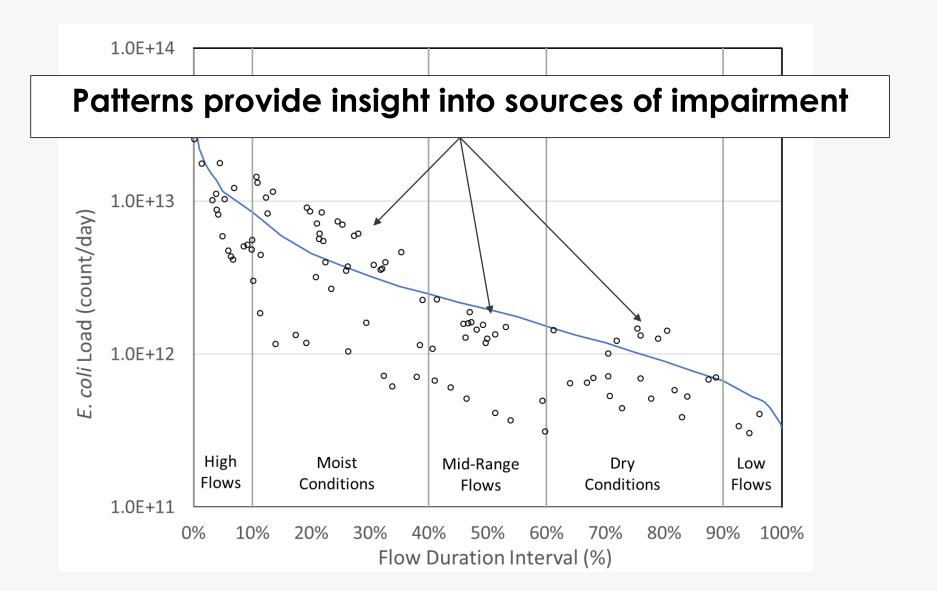

What is a Load Duration Curve?

- A graphical representation of the relationship between the water quality target, streamflow, and monitoring data
- A tool used for the development of TMDLs to determine the pollutant loading capacity and inform allocations
- Plots the pollutant load in a stream or river across a range of streamflow values
- Calculated from streamflow data and a target pollutant concentration

Components of a Load Duration Curve



Flow Duration Interval = percent of time each flow and load are equaled or exceeded


Components of a Load Duration Curve

Components of a Load Duration Curve

Load Duration Curve Advantages

- Relatively simple method to determine loading capacity and interpret streamflow and water quality monitoring data
- Only requires streamflow records, samples of pollutant concentrations, and your numeric target value
- Depicts conditions across the entire flow regime
- Includes data from all seasons and can be customized for specific seasons
- Exceedance patterns can guide pollutant allocation, reasonable assurance, and TMDL implementation

Load Duration Curve Limitations

- Does not quantify pollutant sources
- Generally only useful for streams and rivers (other methods may be needed for lakes, embayments, etc.)
- Cannot be used to evaluate response parameters (dissolved oxygen, chlorophyll-a, etc.)
- Assumes fate and transport processes are not significant (sediment dynamics, chemical transformations, biological uptake, etc.)
- Requires long-term daily streamflow measurements or estimates

Develop Load Duration Curve

Develop Load

Duration Curve

Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4
Interpret &
Apply

Step 5
Document the
Analysis

To develop a Load Duration Curve:

Step 1.

Plan Analysis & Prepare Data Step 2.

Prepare Flow Duration Curve Step 3.

Prepare Load Duration Curve Step 4.

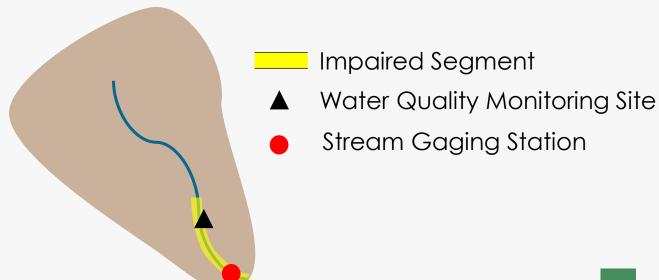
Interpret & Apply

Step 5.

Document the Analysis

Plan Analysis & Prepare Data

Develop Load

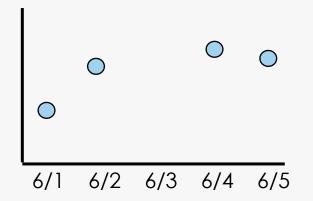

Duration Curve

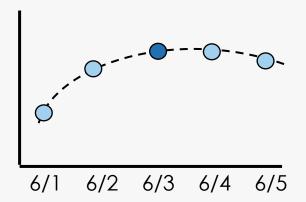
Step 1
Plan Analysis &
Prepare Data

Step 2 Prepare Flow Duration Curve Step 3
Prepare Load
Duration Curve

Step 4 Interpret & Apply

- Planning considerations for Load Duration Curve analysis:
 - Geographic location of impaired segments vs. stream gaging stations and water quality monitoring sites
 - Temporal period of record to analyze, seasonal vs. entire year

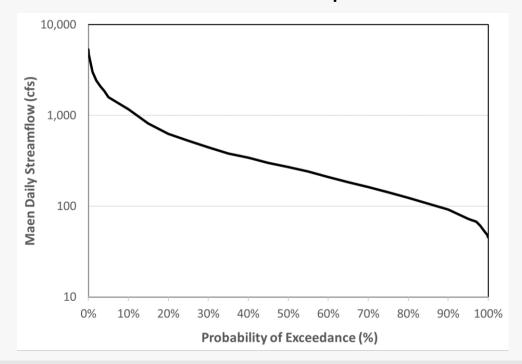

Plan Analysis & Prepare Data


Develop Load Duration Curve Step 1
Plan Analysis &
Prepare Data

Step 2 Prepare Flow Duration Curve Step 3
Prepare Load
Duration Curve

Step 4 Interpret & Apply

- Compile daily streamflow data from USGS or other sources
- Evaluate the completeness of streamflow records
 - Small gaps (days, weeks) could be filled by interpolating between data points
 - Large gaps (months, years) may require advanced methods for estimating missing data


Prepare Flow Duration Curve

Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4 Interpret & Apply

- Begin the analysis by generating a Flow Duration Curve
- A Flow Duration Curve plots streamflow versus the percent of time each streamflow value is equaled or exceeded

Prepare Flow Duration Curve

Develop Load
Duration Curve

Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

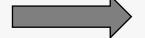
Step 3
Prepare Load
Duration Curve

Step 4 Interpret & Apply

- To prepare the Flow Duration Curve:
 - Calculate streamflow magnitudes for a series of flow duration intervals
 - Plot results
- Can be completed using spreadsheet software or statistical programming packages (R, Python, Matlab, etc.)

Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve


Step 4
Interpret &
Apply

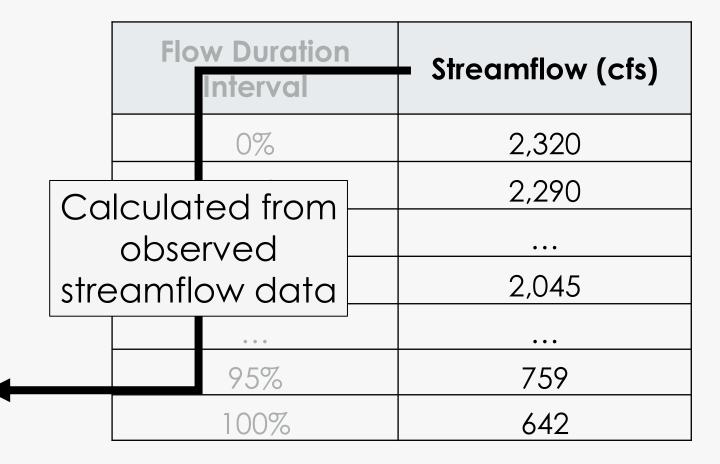
Step 5 Document the Analysis

Maximum flow

Median flow

Minimum flow

Flow Duration Interval	Streamflow (cfs)
0%	2,320
5%	2,290
• • •	• • •
50%	2,045
• • •	• • •
95%	759
100%	642

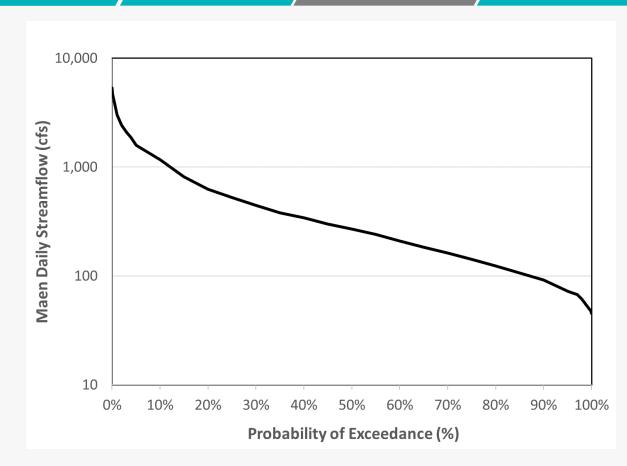


Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4
Interpret &
Apply

Date	Streamflow (cfs)
7/4/2009	2,320
7/5/2009	2,318
7/6/2009	2,310
•••	•••
12/29/2019	1,266
12/30/2019	1,259
12/31/2019	1,255

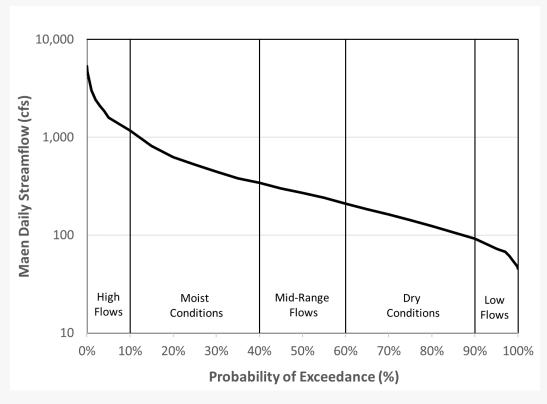


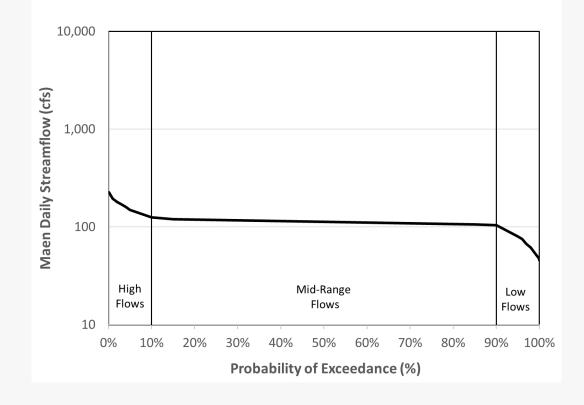
Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4
Interpret &
Apply

Flow Duration Interval	Streamflow (cfs)
0%	2,320
5%	2,290
• • •	• • •
50%	2,045
• • •	• • •
95%	759
100%	642




Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4 Interpret & Apply Step 5 Document the Analysis

Divide the curve into flow regime zones

Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4 Interpret & Apply Step 5 Document the Analysis

- To prepare the Load Duration Curve:
 - Calculate the pollutant load that results in water quality target attainment for each point on the flow duration curve using the general loading equation

General Loading Equation

Load = Target Concentration x Flow x Unit Conversion Factor

Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4
Interpret &
Apply

Flow Duration Interval	Streamflow (cfs)	Target Pollutar Concentration	
0%	2,320		
5%	2,290		
•••	•••		
50%	2,045	1 mg/L	
• • •	• • •		
95%	759		
100%	642		

Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2 Prepare Flow Duration Curve Step 3
Prepare Load
Duration Curve

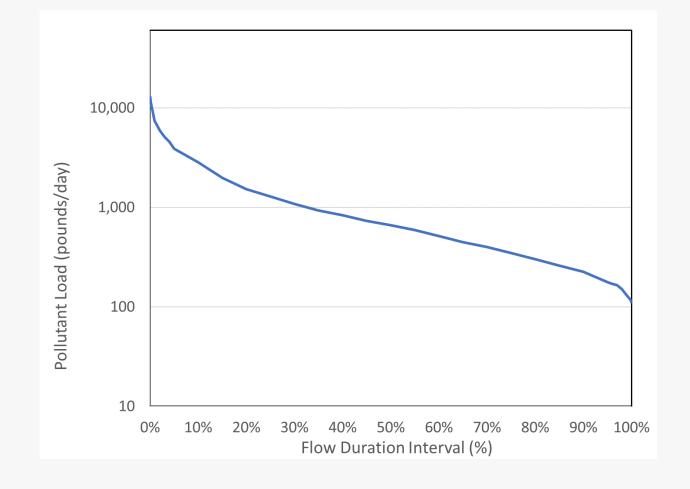
Step 4
Interpret &
Apply

Step 5 Document the Analysis

Flow Duration Interval	Streamflow (cfs)	Target Pollutant Concentration	Pollutant Load (lbs/day)
0%	2,320		12,514
5%	2,290		12,352
0 0 0	0 0 0		
50%	2,045	1 mg/L	11,030
0 0 0	0 0 0		
95%	759		4,094
100%	642		3,463

General Loading Equation

Load = Target Concentration x Flow x Unit Conversion Factor

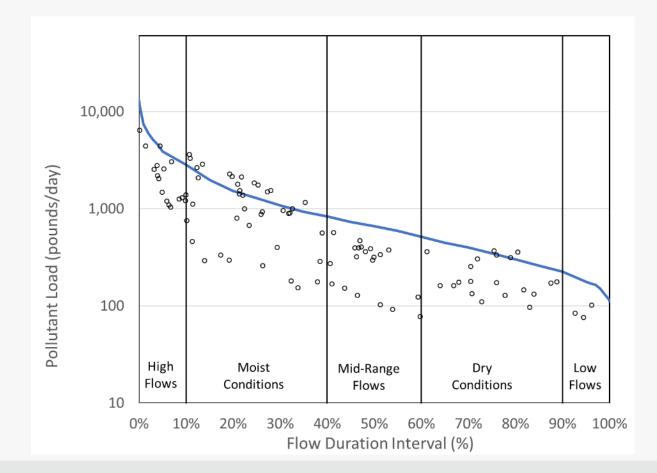


Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4
Interpret &
Apply

Flow Duration Interval	Pollutant Load (lbs/day)
0%	12,514
5%	12,352
•••	
50%	11,030
• • •	
95%	4,094
100%	3,463



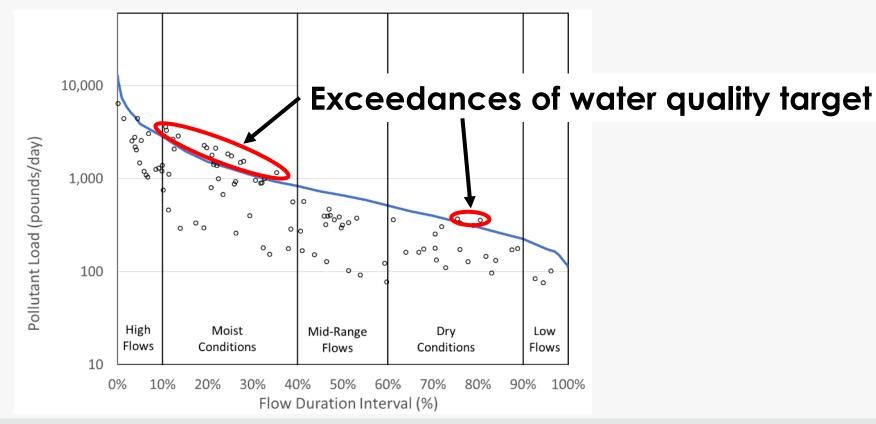
Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4 Interpret & Apply Step 5 Document the Analysis

Add water quality monitoring data and flow regime zones

Develop Load

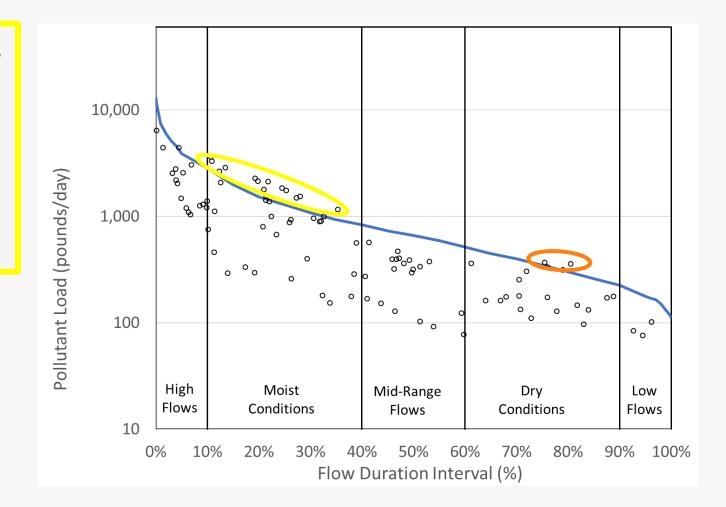

Duration Curve

Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3 Prepare Load Duration Curve Step 4
Interpret &
Apply

Step 5 Document the Analysis

 Use the Load Duration Curve to evaluate the relationship between flow conditions and sampled water quality



Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3 Prepare Load Duration Curve Step 4
Interpret &
Apply

Step 5
Document the
Analysis

Exceedances are generally runoff-driven (agriculture, stormwater, CSOs, etc.)

Exceedances are generally effluent-driven (wastewater discharge, illicit discharges, etc.)

Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

Step 4
Interpret &
Apply

Step 5 Document the Analysis

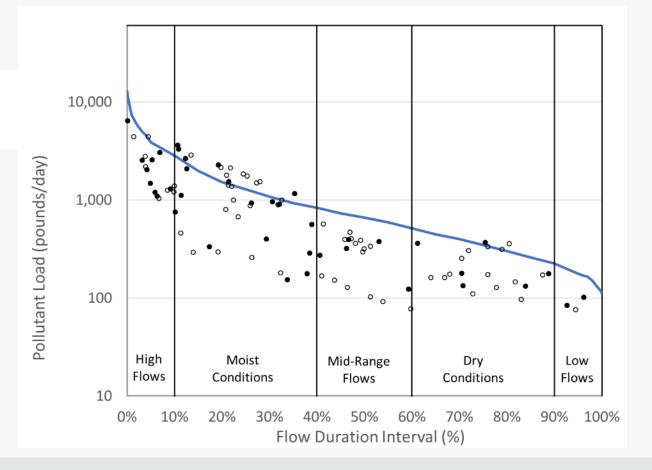
	Load Duration Curve Zone				
Pollutant Source	High Flow	Moist	Mid-Range Flow	Dry	Low Flow
Point Source (Non-Stormwater)				0	•
Septic Systems			•	0	
Stormwater (Impervious Areas)		•	•	0	
Stormwater (Pervious Areas)	•	•	0		
Combined Sewer Overflows	•	•			
Streambank Erosion	•	0			

= HighContribution toExceedances

o = ModerateContribution toExceedances

Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2 Prepare Flow Duration Curve Step 3
Prepare Load
Duration Curve

Step 4
Interpret &
Apply


Step 5 Document the Analysis

Seasonal variation can be evaluated by adjusting sample

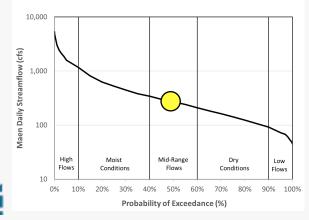
data symbols

Growing Season Samples

Winter Samples

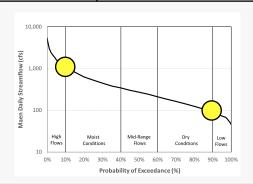
Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2
Prepare Flow
Duration Curve

Step 3
Prepare Load
Duration Curve

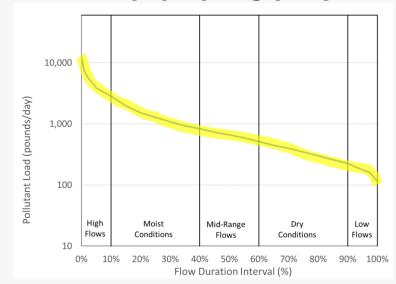

Step 4
Interpret &
Apply

Step 5 Document the Analysis

 Options for expressing the loading capacity from the Load Duration Curve:


Load for a Critical Flow

Loading Capacity = 500 lbs/day



Loads for Multiple Flow Zones

Flow Zone	Loading Capacity
Low Flow	100 lbs/day
High Flow	1,000 lbs/day

Entire Load Duration Curve

Document the Load Duration Curve

Develop Load Duration Curve Step 1 Plan Analysis & Prepare Data Step 2 Prepare Flow Duration Curve Step 3
Prepare Load
Duration Curve

Step 4 Interpret & Apply

- The Load Duration Curve data sources, methods, and results can be documented in the TMDL report or in a technical appendix
- TMDL developers can also update strengths and weaknesses for inclusion in the TMDL report, potential topics include:
 - Streamflow and water quality monitoring data quality (completeness, representativeness, etc.)
 - Supporting evidence for Load Duration Curve assumptions (relationship between streamflow and pollutant loading, minimal fate and transport processes, etc.)
 - How are seasonality and critical conditions addressed?

- 1) Which of the following statements best describe a load duration curve?
 - a) A plot of historical and projected pollutant loading from nonpoint sources in a watershed
 - b) A visual depiction of the relationship between streamflow and loading capacity
 - c) The maximum pollutant load that an NPDES permitted facility is designed to discharge

- 2) What pieces of data and information are typically used to generate a load duration curve? (select all that apply)
 - a) Long-term streamflow monitoring data
 - b) Precipitation measurements
 - c) The numeric water quality target for the TMDL
 - d) Water quality monitoring data for the waterbody
 - e) Discharge Monitoring Reports for point sources

- 3) Which of the following statements is true:
 - a) Load duration curves are generally only useful for streams and rivers; other methods may be needed for lakes, embayments, etc.
 - b) Load duration curves cannot be used to evaluate response parameters (dissolved oxygen, chlorophyll-a, etc.)
 - c) Load duration curves assume that fate and transport processes are not significant (sediment dynamics, chemical transformations, biological uptake, etc.)
 - d) All of the above

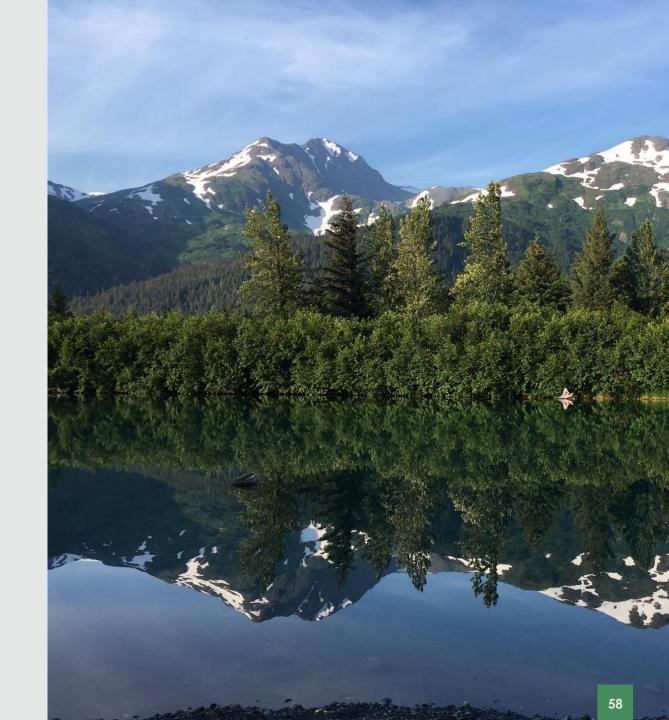
- 4) Exceedances of a numeric target that occur in the <u>low flow</u> portion of a load duration curve are generally <u>runoff-driven</u>
 - a) True
 - b) False

深

Exercise 5.1: Develop a Load Duration Curve

- Download the Exercise 5.1 files to your laptop:
 - Training Session 5 > Activity-Exercise Materials >
 Exercise 5.1 Instructions.pdf

 Exercise 5.1 Load Duration Curve.xslx
- Use the instructions and Excel file to create a load duration curve for the Opal River TMDL
- Answers will be discussed at the beginning of Session 6



Closing Comments

TMDL Academy – Foundations Training
U.S. EPA Office of Wetlands, Oceans, and Watersheds

Q&A Session

