

EPA National Training Workshop, June 22, 2023

THE ACADEMY OF NATURAL SCIENCES of DREXEL UNIVERSITY

OUNDATION

Advancing Water Quality Through Land Protection: Lessons from the Delaware River Watershed Initiative

Abigail Weinberg, Open Space Institute

Direct land protection for clean water, climate resilience, and healthy communities. \$50 million in grants for 260 land protection projects conserving 2 m acres

OPEN SPACE

Nearly \$1 million to integrate science into 80 **conservation plans** covering all or part of 19 states

EPA 2022 Vision Watershed Protection: Minimizing or avoiding water quality degradation to currently healthy waters

OSI Land Protection: Permanent, legal protections that prevent development & minimize loss of forest cover (i.e. easement or fee purchase by a qualified owner)

What I'll Cover

- Delaware River Watershed Initiative
- Targeting Land Protection
- Assessing Impact
- Reflections & Discussion

Delaware River Watershed Initiative Top-down Planning for Priority Regions

Data Inputs

- Impaired streams
- Stream designations
- Riparian zones
- Forest & wetlands
- Impervious surface
- Development and
- Agriculture

Delaware River Watershed Initiative Bottom-up Planning for Implementation Sites

Watershed Selection Criteria Evaluating Warrind Condition and Roj Tovati to Warr Quality at the HUCI3-and				Protection Project Selection Criteria Evaluating the Size, Condition, and Extert of Key Econystems Inhibit to preserving Water Quality						
WATERSHED CONDITION Tagenig high to medentely high qudy vatented when consentition an make a Giberare failum insubvaterard (Perane Index constant (Perane Ingervisus Cever)	ROODFLAIN CONDITION Targening high-quality foodplains includes urrafi and mainteen dwo (Persent imperviews Cover)	DEVELOPMENT POTENTIAL Pojested Inpervices Cover for the HUC12 (Percent Ingeneration Cover)	WATERSHED RANK	PARCEL SILE (acreage)	PARCEL CONDITION (Person Imperviews Cover)	HABITAT CONDITION Provide habitat for species of concern (Horitage7)	AQUATIC CONDITION Presents potion ofanEV.HQ. Brook or Wild Thost Stream (percent of stream presented by preperty)	ABUNDANCE OF WEILAND ECOSIS TEIMS (acresp: & perant of property in wellands)	ABUNDANCE OF RIPARIAN & HLOODHLAIN ECOS WITEMS (peresge & persent of property in riparian or fleedplain areas) (ase NHD Pha, ARA)	PROJECT RANK
Identifying Headwaters and Floodplains of Signifunce				A Comparison to other Science- Based, Water Resource Prioritizations						
HEADWATER CONSERVATION Calletins of Projects and cutting Protected Lends combine to sum serve extensive Readwater Regions of Readwater (serve)	FLOODFLAIN CONSERVATION Protects daughtins then major dynamic Claster (fact of review fromage)	FLOODPLAIN CONNECTIVITY Geleration of Project and chaing Protected Lands conserve significant content of Readphase stores (Read) Readphase stores (Read) Readphase stores (Read)	HEADWATER AND FLOODPLAINS OF SIGNIFICANCE RANK	Identified by Academyof Natural Sciences Cluster Ranking (IC, Wotands, Formits, Ag)	Mentified by Common Water's Priority-Area	Identified by Aquatic Radiseccy Analysis (arder development)	OVERAI QUALI	L WATER IY RANK		
	EVALUAT	ING PROJE	CT CONSI	RAINTS	AND OPP	ORTUNI	TIES			

Ability to Produce Clean Abundant Water

OPEN SPACE

https://s3.amazonaws.com/osi-craft/Dela

Geographic Targets for Protection & Restoration Strategies

Watershed "Clusters" & Focus areas

OSI Delaware River Watershed Protection Fund

- 1. Watershed concert
- 2. Water resources & steverdship
- 3. Risk of conversion

To date:

65 approved grants potecting 27,000 acres of natural land 15,000 acres of heal aters 135 miles of stream bank

Assessing Impact

Lit Review: Forest Cover vs. Water quality

Research: Assess Water Quality Impacts

Our Overarching Question

What percentage of forest cover is needed in a watershed in order to maintain high water quality and ecosystem integrity?

What is <u>high</u> water quality and <u>high</u> ecosystem integrity? (not a regulatory standard)

Sampling Sites

DRWI stream sampling sites

Controls

- One Ecoregion (Northern Glaciated Allegheny Plateau)
- Well forested (Forest Cover > 50%)
- Small watersheds (700-4000 acres)
- Limit wetland influence (<10% wetlands watershed, <2% wetlands local)
- No point sources

Sampling: Results (includes previous sampling)

For chemistry and macroinvertebrates:

- Forest cover (%) was generally the best predictor of water quality (nutrients) and stream condition (macroinvertebrates).
- Watershed land cover is more predictive than riparian or local site land cover.
- Above 85% forest, no detectable impacts; between 70% and 85% limited detectable impacts for macroinvertebrates
- Between 50-70% forest, nutrients and major ions are elevated and statistically relatable to human influences

Future Opportunity: HUCI2s With Sufficient Natural Land

Modeling: Approaches

65 projects evaluated for:

- I. Avoided Land Use Change
- 2. Downstream Benefit
- 3. Riparian Buffer Benefit

Avoided Land Use Change Scenarios

Professional Judgement of Development Threat

Low density development

Modeled Development, Centers 2100 Modeled Development, Sprawl 2100

Future Loads Avoided

Parcel averages of estimated avoided phosphorus loads (average lbs/year)

Each scenario shown at right

Stormwater Runoff

24 hr storm; 3.3 inches

Sum of estimated costs for stormwater infrastructure for 51 projects

Each scenario shown at right

Modeling Comparison: Protection vs. Restoration

Phosphorus *Reduced* by Restoration (57,000 acres) and *Avoided* by Protection (35,000 acres)

- ~30-40 percent of projects are annual practices with annual costs and are susceptible to long term management changes
- Many suburban BMPs have maintenance and replacement lifespans
- There are potential annual maintenance expenses for all categories.

Reflections & Discussion

Reflections

- Without timescale of impact, pollutant loads avoided/filtered were modest compared to non-point source BMPs
- Best practices for implementing "avoided development" could help advance the field
- Avoided pollutants were greater in undeveloped headwaters than areas with higher projected development due to large parcels in headwaters
- A consistent standard for "clean waters" could help clarify where protection is an appropriate strategy
- Planning and assessment at the HUC 12 scale works well for implementation and assessing impact
- Clear goals for achieving "effectiveness" need to consider scale, available funds and timeline

Thank you!

Abigail Weinberg, aweinberg@osiny.org