Kentucky's Listing Methodology using Narrative Nutrient Criteria: Where we've been and where we're going

Katie McKone
Kentucky Division of Water
katie.mckone@ky.gov

Narrative Nutrient Criteria Updates Approved by EPA November 15, 2013

• 401 KAR 10:031. Surface Water Standards

<u>Nutrients Criterion</u>. Nutrients shall not be elevated in a surface water to a level that results in eutrophication. [Nutrient limits. In lakes and reservoirs and their tributaries and other surface waters where eutrophication problems may exist, nitrogen, phosphorus, carbon and contributing trace element discharges shall be limited in accordance with:

- 1. The scope of the problem;
- 2. The geography of the affected area; and
- 3. Relative contributions from existing and proposed sources.]
- 401 KAR 10:001. Definitions for 401 KAR Chapter 10.

'Eutrophication' means the enrichment of a surface water <u>with nutrients nitrogen and phosphorus resulting in adverse effects on water chemistry and the indigenous aquatic community. Resulting adverse effects on water chemistry manifest by daily dissolved oxygen supersaturation followed by low dissolved oxygen concentrations and diurnal increase in pH. Resulting adverse effects on the indigenous aquatic community include:</u>

- a. <u>Nuisance algae blooms;</u>
- b. Proliferation of nuisance aquatic plants;
- c. <u>Displacement of diverse fish or macroinvertebrate community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments; or a community by species tolerant of nutrient-enriched environments.</u>
- d. <u>Fish kills brought on by severe, sudden episodes of plant nutrient enrichment.</u>[by the discharge or addition of a nutrient.]

What does the data need to demonstrate?

(27) "Eutrophication" means the enrichment of a surface water with nutrients nitrogen and phosphorus resulting in adverse effects on water chemistry and the indigenous aquatic community. Resulting adverse effects on water chemistry manifest by daily dissolved oxygen supersaturation followed by low dissolved oxygen concentrations and diurnal increase in pH. Resulting adverse effects on the indigenous aquatic community include:

- (a) Nuisance algae blooms;
- (b) Proliferation of nuisance aquatic plants;
- (c) Displacement of diverse fish or macroinvertebrate community by species tolerant of nutrient-enriched environments; or
- (d) Fish kills brought on by severe, sudden episodes of plant nutrient enrichment.

New narrative, new method

Goal: Improve confidence, reproducibility, and transparency in assessment decisions

- Increase data collection on response indicators and manage these data effectively
- Derive nutrient screening values based on accumulated data on biological response and natural regional variation
- Outline steps and considerations inherent in "BPJ" decisions
- Expand staff participation in assessments to increase capacity, redundancy, diversity of expertise involved
- Improve documentation of indicators in assessment process
 - Better understanding of the problem and the target for management (e.g., TMDL)
 - Increased ability to identify potential delistings
 - Prioritize follow up monitoring for listing where current data may be insufficient

		140ml		XCEE	DANC		Tarks Run Supple		Inter Qua	lity Data, 2008-200	19		EXCE		(E)	= 8 8	100	0	
Site	Date	Flow Event	Temperature (F)	Temperature (C)	1220	Unionized	Conductivity	DO	7899333		Discharge	NOZ	NOZ/NO3	NO3	NH3-N	TKN	1	TP.	
Goggin Ln	12/8/2008	law	41.8	5,44	pKa	Ammonia	(mS/cm)		pH (SU)		(ft3/sec)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	TN (mg/L)	(mg/L)	OP (mg/l
A STATE OF THE STA		San Control of the Co			9.89	0.0012	625	17.92	8.35	0.5	6	0.200		9.400	0.034	0.80	10.40	0.200	0.170
Goggin Ln	1/6/2009	moderate	44.9	7.17	9.83	0.0033	513	11.10	8.47	opaque	35	<0.030		3.890	0.065	<0.20	3.89	0.131	0.078
Goggin Ln	2/3/2009	moderate	40.4	4.67	9.92	0.0013	404	13.02	8.13	8.6	62	0.018		4.180	0.067	0.63			
Goggin Ln	3/3/2009	moderate.	42.4	5.78	9.88	0.0125	411	16.75	8.70	5.3	36	100 STORY			1	0.000	4.82	0.130	0.083
Goggin Ln	4/7/2009	moderate	47.7	8.72	9.77	0.0087	423		12379550			<0.030	11	3.730	0.167	0.44	4.17	0.153	0.104
Goggin Ln	5/5/2009	moderate	60.1	15.61				13.88	8.47	8.1	67	<0.030		3.000	0.154	0.35	3.35	0.146	0.051
					9.54	0.0217	432	12.79	8.54	6.1	53		3.75		0.200	0.48	4.23	0.209	0.219
Goggin Ln	6/2/2009	law	80.2	26.78	9.19	0.1136	489	13.36	9.29	1.5	5	0.087	J See No Control	10.000	0.170	0.71	10.80	0.312	0.284
Goggin Ln	7/1/2009	moderate	74.8	23.78	9.28	0.0706	483	12,64	3.98	3.1		0.020		5.480					- COVA940
BB Mouth	12/8/2008	low	46.1	7.83	9.80	0.0207	402	44.45	3.00	0.0	0	W.020		3.480	0.177	0.36	5.86	0.187	0.082

Site 6	Collection Date	CBOD-5 mg/L	Nitrate/Nit	Ortho- phosphorus mg/L	Phosphorus, Total mg/L	Total Kjeldhal Nitrogen mg/L		Dimolved Oxygen mg/L	Oxygen %Saturati on mg/L		Organic Carbon		Specific	Discharge	
DOW04018087	11/8/06 13:10	<2	3.99	0.162	0.286	0.2741	2.5	917	n/a						Comments
UT Cane Run @ UK Ag Research Farm	anumenmann	4	1.6	0.138	0.235	<0.2		10.64							
38,1288, -84,50798	HAUROSUSSES	<2	3.06	0.13	0.20	<0.2	Not detected	n/a	n/a						
RM 10.8, UT RM 0.20	1/16/07 12:45	19821		100	1		1000000			1150	1.10	0.44	393	1.45	DO meter malfunction
KY488799-10.8 06	2/13/07 12:45	<2	4.17	0.231	0.469	0.487.3	18.5	9.84	n/a	8.1	1.81	8.54	105	33.46	Standiduckers come flour 23 00 of
75 TORO 37 TABLE OF	2/13/07 12:00	<2		0.2	0.308	0.383	19.5	12.91	m/a.	8.06	1.66	4.03	434		Stage discharge curve now = 21.08 ct
	3/8/07 12 30	<2	4.32	0.155	0.284	0.451.3	9,5				1.52				dumlicate data
No prior listing	4/12/07 12:10	<2	2.24	0.107	0.236	< 0.2	3	nen	n/a	0/8	1.17	D/A	n/a	4371	
	5/10/07 13:00	4	1.21	0.0687	0.119	<0.2	1.5	11.51	m'a.						
	6/21/07 12:45	2970	0.023		0.136	0.28 J	3	15.6	11/4	8.72	1.79	21.2	314	1.191	
	7/11/07 11:35	<2	0.0592	0.204	0.586	0.829	56.5	n/a	sva	n/a	2.78	IV:	n/a		Hydrolah unavailable: discharge actions
Assess as NS for Total Nitrogen, Total	010011120		0.0592	0.18	0.331	0.451	1.5	86/la	n/a	n/a	2.62	11/2	19/8		Hudeshih sens nilahla
Phosphorus	8/8/07 12:50	9	0.109	0.174	1200		0.00		0.000	Para de la	description's	-			Try droing anevaluable
	9/5/07 14:00	- 0	0.0282	0.174	0.318	0.514	4.5	7.12	88.6	7.35	2.5	26.51	429.0	0.191	
	10/4/07 0:00	n/a	0.0282	0.136	0.473	0.696 n/a	24	3.89	47.2	7.23	3.39	24.8	1991		discharge englant if
Chemistry Flags d = not detected Just Bag = estimated value Austrament Flags								r.	7.	_ 5	-3.8	0/0			
atom exceeds a screening value (D.O. < 0, TKN> 1.0, Nitrate/Stritie > 3.0, star Phosphorus > 0.02, pH > 8.0) times represent as exceedance for ionized ammonis, based on pH and mperature excludations as form in 401 AR 10:031, or of the DO standard of burgl.			N02	-40	3	((€?)	ALCE		13	٤)س(٤	5 =	13	= 1	00%	,
Dahum exceeds the screeing value of O. > 9.0; this color was used instead of ight yellow to distinguish these values Dahum likely experients a level of a					OHOS	PHORU	15	fx c							

Data Collection, Management, and Analysis

- Are we, and our data partners, collecting the right type of data?
 - New method triggered review of monitoring protocols
- Can we store this data? Including observations and photos
 - New method also coincided with data base updates
 - Started using K-WADE in 2015
 - Started using KATTS in 2018
- Can we query this data?
- What does our data tell us about the relationship between N & P and our biological indices?

N and P

DO Supersaturation followed by low DO Diurnal increase in pH

What are elevated values of N & P in Kentucky? That depends...

Reference Only

75th percentile **Total P** (mg/L)

71e*

6.16

MVIR

0.87

Mountains

0.19

without 71e

0.72

Pennyroyal

0.02

MVIR

0.06

Mountains

0.01

Bluegrass

0.34

Inner BG

0.16

* Included all programs, not just reference	*	Included	all prog	rams, no	ot just re	eference
---	---	----------	----------	----------	------------	----------

Inner BG

0.78

Bluegrass

2.11

Reference Only

75th percentile NO2/3

First pass at ecoregion/bioregion scale screening values for NO2/3 and TP

followed by low DO Diurnal increase in pH

- Related NO2/3 and TP to macroinvertebrates that scored a good or excellent on the MBI
 - Screening values for **nitrate/nitrite (mg/L)** per bioregion (71e separated from PR, and Inner Bluegrass separated from Bluegrass), based on the 95th percentile of sites that scored a good or excellent on the MBI
 - Screening values for **total phosphorus (mg/L)** per bioregion (Inner Bluegrass separated from Bluegrass), based on the 95th percentile of sites that scored a good or excellent on the MBI
- Growing season evaluation (April October) for wadeable streams (<200 mi² catchment area)
- Minimum of monthly samples
- High flow events reviewed
- If more than one screening value excursion occurs outside high flow, then evidence for enrichment
- Statewide screening values for TKN and TOC

These excursions put us on the path of "nutrients as a candidate cause", where the other parts of the narrative nutrient criteria are evaluated before listing.

Adverse effects on indigenous aquatic community

Algae blooms
Nuisance aquatic plants
Displacement of diverse
fish or macroinvertebrates
Fish kills

Kentucky has a Macroinvertebrate Biological Index (MBI) and a Fish Index of Biological Integrity (KIBI)

From original MBI and KIBI papers, general relationship between MBI/KIBI and nutrient enrichment demonstrated. Some individual metrics perform better than others.

Bioregion level relationships not evaluated.

Table 14. Pearson correlation matrix of nutrients and macroinvertebrate metrics. Bolded values are **not** significantly different (p>0.01). TKN=Total Kjeldhal Nitogen, TN=Total Nitrogen, TP=Total Phosphorus.

	Ammonia	Nitrate-N	TKN	TN	TP	TN*TP
TR	-0.39	-0.20	-0.27	-0.36	-0.52	-0.50
EPT	-0.48	-0.27	-0.46	-0.52	-0.67	-0.67
mHBI	0.55	0.31	0.51	0.60	0.59	0.64
m%EPT	-0.48	-0.28	-0.56	-0.57	-0.58	-0.64
%Ephem	-0.40	-0.21	-0.49	-0.47	-0.39	-0.41
%Chir+Olig	0.53	0.11	0.36	0.32	0.31	0.33
%Clingers	-0.30	-0.20	-0.15	-0.27	-0.23	-0.27

Table 9. Pearson's correlation matrix of chemical values vs. fish metric scores and KIBI.

Metrics	Cond.	Ammonia	Nitrate	TKN	TN	TP	TN*TP
NAT	-0.34	-0.25	-0.23	-0.03	-0.22	-0.01	-0.11
DMS	-0.29	-0.31	-0.09	-0.18	-0.23	-0.10	-0.19
INT	-0.39	-0.31	0.00	-0.30	-0.23	-0.19	-0.24
SL	-0.13	-0.42	-0.18	-0.28	-0.37	-0.18	-0.31
%INSCT	-0.30	-0.29	0.04	-0.14	-0.11	-0.11	-0.13
%TOL	-0.23	-0.36	0.15	-0.25	0.13	-0.12	-0.13
%FHW	-0.28	-0.24	0.16	-0.14	0.02	-0.09	-0.07
KIBI	-0.35	-0.37	-0.03	-0.20	-0.21	-0.15	-0.21

Bolded values are **not** significantly correlated (p< 0.01)

Adverse effects on indigenous aquatic community

Algae blooms Nuisance aquatic plants Displacement of diverse fish or macroinvertebrates Fish kills

Algae and macrophyte observations – new field form and database entry to accompany water chemistry results.

		-			OEN!!			10110							
					GENI					1		T			
WEATHER		Toda	Yesterday	Day be	fore										We send
										☐ YE	S UNO				vve senu
1	,	_	_				ow		t	STREA	M SHADING	□YI	ES UNO		USACE se
				_				□ r-!-				Hydro	graph Limb:		
		_	i -	_								Sta	able		database
Clea	ar/Sunny		_	_			ıal		olain:	☐ Par	tial (25-75%)	Ris	ing		0.0.00.00.00
Cloudy/	Overcast		_	_						□ No	ne (<25%)	□Fal	ling		
Snow, slee	t, or hail					☐ Unknown						☐ Pea	ak		
	Heavy Rain														
GARRAGE	SHID		TURRIDITY						c.	TDEANA	COLOR		EICHKILI	EII	AMENTOUS ALGAE
OANDAGE	300.	'	TORBIDITI	OIL/ GI	ILAJE								TISTIKIEE	1110	AIVILIVIOUS ALGAL
													_	% (COVER—how much
													□ No	ha	bitat is covered with
			_					_				ear			
Severe											_ ′				Cladophora. This
Extreme		- 1							rai					ing	strands, or short c
Extreme	L EXCICI						_		ONIC		_ other			flo	w event). Look care
				.GAE A	יו טווו				JIVS					like	e moss.
	FILAMENT	rous <i>i</i>	ALGAE			MICR	ROAL	GAE MATS			AQUATIO	CMAC	ROPHYTES		
% C	OVER		GROWTH S	TAGE		THICKNESS		% C	OVER		9	% COV	ER		OWTH STAGE—'Gr
Ri Ru Po	FILAMENTOUS ALGAE **COVER GROWTH S' **Po		1	□ Ne	gligible	Г	Ahsent			Ri Ru Po			the	e filamentous algae	
☐ ☐ ☐ Abse	ent		□ □ □ Gro	wing [6)			bsent		<u> 'Se</u>	nescing' if >75% of
	☐ ☐ Sparse (5%) ☐ ☐ ☐ Senescing		escing [□ Sev	vere			,	5)		parse ((5%)	bro	own (not just covere	
	•	•	□□□□ Mix					☐ Abundant	(25-50)%)					th conditions occur
		•						Extensive	(>50%)				טט	an contaminons occur
□ □ □ Exte	nsive (>50)%)							-	-		xtensi	/e (>50%)		

We send this same field form to external data partners. USACE sends us these observations, which we enter into our

database, since the USACE database doesn't have observations.

COVER-how much of the in-stream abitat is covered with filamentous algae, . Cladophora. This can be in long flowg strands, or short clumps (after peak ow event). Look carefully—it can look

ROWTH STAGE—'Growing' if >75% of e filamentous algae is bright green. enescing' if >75% of the algae is yellowrown (not just covered in silt). 'Mixed' if oth conditions occur and neither is >75%.

MICROALGAE

THICKNESS—how thick is the unicellular (NOT filamentous) algae on the in-stream rock surfaces.

DEFINITIONS FOR ALGAE AND MACROPHYTES

'Negligible' algae not noticeable, or barely noticeable on surfaces.

'Moderate' algae is noticeable on surface of substrate, but not slick or thick.

'Severe' algae is noticeably thick in many areas of the stream channel.

'Extreme' microalgae is so thick that it dominates the character of the stream, it can be scooped up, or looks like a rug.

MACROPHYTES

Macrophytes are NOT algae, they include mosses and any vascular plants growing in the wetted width of the stream, either fully submerged, or emergent.

Estimate the percentage of the surface area in each habitat category that is covered by submerged or emergent mosses and/or vascular plants.

<u>Trial Run:</u> 2018/2020 and 2022 cycles

 All the comments/observations/ photos/etc. entered into database (K-WADE) along with water chemistry results and in situ measurements

- Training and QC ensures data management occurring as expected
- Scorecard data reports generated that compiles all pertinent information for listing (R-script)
 - Field staff complete scorecards, which helps them in making more informed comments/observations when in the field

A A	В	D	E	D	E	F	G	Н	1	J	N	0	
			AQUATIC A										
Field		ALGAL MAT	MACROPHYTES N	type ▼	METRIC_NAME	METRIC_VALUE ▼	METRIC_SCORE	lower_bound ▽	Above Reference 🔻		Pri BENTHIC ALGAE -		Ca
	activity_date	SEVERITY	% COVER - 9	supplementary	% 5 Dominant	92.8	11.35	41.3	no			MICROALGAE MATS %	Est FI
KWAD STATIO			POOLS F	supplementary	% Hydropsychidae	0.6	100	67.87	yes		PICTHICKNESS	COVER	20
STATIO	<u> </u>			supplementary	% Intolerant	0	0	17.32	no		PIC		Its 20
STATIO	05/07/2019	SEVERE/HEAVY		supplementary	% Non-insect	60.2	40.11	78.83	no		PR		50 20
Α	05/21/2019	SEVERE/HEAVY		supplementary	% Nut. Tolerant Taxa	78.8	23.82	29.66	no		PR		50
		MODERATE		supplementary	% Predator	0.6	1.71	25.61	no		GR		50
		NOT ASSESSED		supplementary	% Shredder	10.3	78.15	5.3	yes		STA		25
		MODERATE		ng supplementary	% Tolerant	55	49.22	33.54	yes		PR		75
		MODERATE		supplementary	Genus Clinger Richness	5	17.86	45	no		CH		75
2019		MODERATE		supplementary	Genus Intolerant Richness	2	7.14	28.57	no		СН		50
2019		MODERATE	1	supplementary	Genus Predator Richness	2	8.7	34.78	no		OT-		25
2019		MODERATE		supplementary	Genus Shredder Richness	2	28.57	22.86	yes		AN		75 ments with ba
2019 2019 2019 2019	, ,	MODERATE	-	supplementary	Hilsenhoff Biotic Index	6.42	52.92	55.01	no		M/		75.i-b (1
2019	10/29/2019	MODERATE		MBI	% Chiro and Oligo	12.9	87.9	86.7	yes		AN	ADUNDANT (OF FOO()	75 _{high flow, mude}
2019			,	MBI	% Clinger	34.1	43.71	52.08	no		ANModerate	ABUNDANT (25-50%)	
2019 2019 2019 2019 2019 2019 2019 2019	11/21/2019		ABSENT A	MBI	% Ephem	0	0	18.57	no		TA Negligible	ABUNDANT (25-50%)	0-2
2019	12/05/2019		C	MBI	Genus EPT Richness	2	7.14	40	no		RE Moderate	COMMON (5-25%)	0-2
2019	01/23/2020		SPARSE (<5%) /	MBI	Genus Taxa Richness	24	37.5	56.29	no		TA	COMMON (5-25%)	0-2esent with no
2019			3PAR3E (<570) P	MBI	m % EPT	1.7	2.32	39.54	no		AC Moderate	COMMON (5-25%)	of aquatic pla
2019	02/19/2020		S	MBI	mHBI	6.58	50.57	59.53	no		Moderate	ABUNDANT (25-50%)	0-2 tle macrophyt
2019 2020 2020 2020	03/11/2020		SPARSE (<5%) S	mMBI	m % Clinger	33.2	51.06	33.03	yes		Moderate	ABUNDANT (25-50%)	
2020											Me	ABONDAN (25-30%)	_
2020				Metric > Reference	Percentage						AC		tions in pools
2020				6	29						CA		
\Box	C+-+: !										CC		
water	Station Info			INDEX_CALC_BY		INDEX_CALC_METHOD					CA CO FIE PR		+
	PROGRAM_NAME			Jessica Schuster	03/27/2023	MDEA v 2022.01	BLUEGRASS				PR		
1 -	PROJECT_NAME												
	STATION_CATEGORIES			activity_date	INDEX_NAME	INDEX_SCORE	lower_bound	_	Fair/Good Cutoff				
	STATION_NAME		-	05/23/2019		38.1905	21	Poor	57				
C	LOCALE_NAME		-	05/23/2019		39	20	Poor	54				+
projec	LOCATION_DESC		-	05/23/2019	O/E	0.41	0.78	Below Reference					+-===
	COMMENTS												
	CATCHMENT_AREA		-										
	LAT_DECIMAL												
	LON_DECIMAL												
_	RECEIVING_WATER												+
	MAJOR_RIVER_BASIN												
	BMU												
	ELEVATION	NINTY											
	PRIMARY_SECONDARYCO		-										
	PRIMARY_SECONDARYEC		-										+
	PRIMARY_SECONDARYPI		-										
+	PRIMARY_SECONDARYB	UNEGIUN	-										
			-										•
			-										
			-										+
\perp			-										
											<u> </u>		
			-Ai Inf	RBP MBI-Data	MBI Taxa Calibratio	on Field Obser	vations Free Fr	oms Field Meas	surements Nutrients				
-4	► PCR S	Summary Sta	ation Informatic				1			1	· 🕀 ᠄ [4	

Assessment Decisions and Documentation in Assessment Database (KATTS)

- Narrative criteria related to indicators -> Indicators related to parameter ->
 Parameter status (meeting, not meeting, insufficient) informed by indicators
 - Assessors use all available scorecards from an AU to make final assessment decision

Next Steps

- Since Screening Values developed, around 400 new macroinvertebrate index scores and about 200 new fish index scores
 - Accompanied by water chemistry, in situ, observations, etc.
- Review/update Screening Values using newly available data
- Data analysis to review relationships between individual metrics per bioregion/ecoregion that are sensitive to elevated nutrients
- Expand method in KY's CALM

Thank You! Questions?

