Stream Function Assessment Method: Supporting Compensatory Mitigation Decisions in Oregon

Development and Implementation Challenges

Tracie Nadeau, U.S. Environmental Protection Agency, Region 10 (Pacific Northwest)

ELI Stream Mitigation Webinar Series August 27, 2018

What are the Drivers for SFAM?

Core Issue: Mitigation for non-wetland waters is inconsistent

- Lack of a common language to talk about stream functions and values
- Difficult to understand the effects of stream projects (partial loss)
- Difficult to determine appropriate compensatory mitigation

What are the Development and Regulatory Objectives?

- Scientifically robust
- Repeatable and consistent
- Predictable and transparent
- Accurate and defensible
- Rapid

What are the Components of SFAM?

- Excel Workbook
- User Manual
- Scientific Rationale
- SFAM Map Viewer

	ST	REAM FUNC	TION A	SSESSMENT METHOD &	OREGON	
		REAL FORC	- I ON P	COLORENT METHODIC	I ONLOON	
Rame of					Enter Date	in factore Boxes DNLT
ropect Area		0			Subscreek Automation	any force and in these Bos
			FUNC	TIONS MEASURES TABLE		
Measure	Function Groups	Measure	Qualifiers		Outa Entry	Name of Street
Incluion	What is the degree of As part of the longitud from the stream thatset	of channel incluion wi inal survey, at 11 evenly og 10 the lowest floodpla	this the EAA spaced local inferrace divi	? ions along the stream within the EAA, measure t ded by the active channel height (see field form). I	he Bank Height Ratio Do not consider inset	(PH); The DHI is the heightern
	Functions informed: 5	urface Water Storage, S	Sediment Cont	inuity		
	Functions informed: 5 Historiage Beconstratings Becoge	Inface Water Diorage, 5 Incision	Sedment Con	Enter the average bank height ratio (nunded to the nearest hundredh)		
Canopy Cover	Functions informed: 5 Futbrings: Beeings What is the percent. Measure percent cove transect within the PA Functions informed: 5	unlace Water Storage, 5 Inclusion vegetated.cover.above r above the stream, incl A. ub/Surface Transfer, Nat	n the stream	Inuty Enter the average basis height ratio (nunded to the nearest hundredth) within the PMA? Instary and understory vegetation, by averaging so Thermal Regulation	herical densionates n	nessurement d'Islen et ex
Canopy Cover	Functions informed: 5 representations Beinge What is the percent Measure percent cover transect within the PA Functions informed: 5 Beings, Water Gaelity	untere Water Disrage, 5 Incision vegetated_cover_ablew above the stheam, incl A. Ub/Surface Transfer, Na/ Cover	tief Cycling	nuty Enter the average bank height rake hounded to bit nearent hundwelli) within the PAAP entry and understory regelation, by averaging sp Thermal Regulation Enter a paccettage (ounded to the nearest) white nutber)	heical desceneter o	nesurementat taken at ea
Canopy Cover Invasive Weeds	Functions informed 5 reasonage. Bestage What is the percent. Measure percent cave transect within the PA Functions informed 5 Biology, Water Cavely, Water Cavely, State percent. Functions informed 30	Infece Water Disrage, 8 Incluion vegetated, cover, ablex a box the stream, incl A, ub/Surface Transfer, Na Cover Cover, of Imasiles, wee taintain Diodiversity, Sur	edment Com is the stream using both ow triant Cycling ds. within the stain Trophic S	nuty Enter the average bark height offic Hounded to the searest hundweld) within the EAA? Thermal Regulation Enter a percentage (ounded to the nearest white number) EAA? broches	Avrical dessentation	heasunnantid taken af ear
Canopy Cover Invasive Weeds	Functions informed 5 metmospheres beinge Mark in the percent. Mask in the percent. Mask in the percent manaed within the PA Functions informed 35 Burnage, Water Gueffly What is the percent. Functions informed 30 Burnage	versee Water Disrage, B version registantid, cover, ablow rabow the stream, excl. A ub/Durtace Transfer, Na/ Cover, cC Insanitra, were science, cC Insanitra, stream science, cC Insanitra, stream science, cC Insanitra, Stor Investeed	edment Com a the atreast using both ow thert Cycling de within the stan Trophic S	nuty Enter the average lately height oftic (suchda'ts be seared hundredit) weblik site DAA? Thermal Regulation Enter a percentage (suchda'ts the nearese whole number) EDAA? Distorive Enter a percentage (suchda'ts the nearese undredits) Enter a percentage (suchda'ts the nearese undre number)	peică bescete e	neasurementid taken af ear

SFAM Development History

	Conceptual Development / Tech Working Group
2010-2013	Stream classification system development
	Initial method produced
2013-2014	Initial field testing
2014-2015	Revisions & Draft method
2015-2016	External review Statistical analysis
2016-2017	Revisions (models & measures)
-	Statistical analysis
2018	Standard performance index development
	Pilot testing and V1.o Release

All processes, revisions, decisions and outcomes have been documented.

Defining Stream Functions & Values

Function = the processes that create and support a stream ecosystem Value = the ecological and societal benefits that riverine systems provide

Function Group	Specific Functions/Values
	Surface Water Storage
Hydrologic	Sub/Surface Transfer
	Flow Variation
Goomorphic	Sediment Continuity
Geomorphic	Substrate Mobility
K	Maintain Biodiversity
Biologic	Create and Maintain Habitat
	Sustain Trophic Structure
	Nutrient Cycling
Water Quality	Chemical Regulation
	Thermal Regulation

- 11 Functions were selected to represent the majority of stream and riparian processes necessary to sustain healthy stream ecosystems
- Each Function has an associated Value
- Functions and Values are categorized within 4 functional groups

Measuring Stream Functions

- Functions are difficult to directly measure within regulatory parameters; must be quantified using measures
- 17 measures evaluate specific features characteristic of or inherent to, the function and may indicate the extent to which a particular function is active

✓ Quantifiable

- ✓ Rapid
- ✓ Repeatable
- ✓ Sensitive

FUNCTION MEASURES:

- Natural cover
- Floodplain exclusion
- Wood
- Incision
- Embeddedness
- Fish Passage Barriers
- Overbank flow
- Wetland vegetation
- Plant composition (x₃)
- Riparian buffer width
- Channel bed variability
- Lateral Migration
- Bank Erosion
- Bank Armoring
- Side Channels

Sub/Surface Transfer

Ability to transfer water between surface and subsurface environments

Variable Channel Bed

Wetland Vegetation

Overbank Flow DurationBase FlowGround Water FluxHyporheic Flow

Defining Stream Functions

Function = the processes that create and support a stream ecosystem

Function Group	Specific Functions/Values
	Surface Water Storage
Hydrologic	Sub/Surface Transfer
	Flow Variation
Goomorphic	Sediment Continuity
Geomorphic	Substrate Mobility
	Maintain Biodiversity
Biologic	Create and Maintain Habitat
	Sustain Trophic Structure 🖌
	Nutrient Cycling
Water Quality	Chemical Regulation
	Thermal Regulation

FUNCTION MEASURES (17):

- Natural cover
- Floodplain exclusion
- Wood
- Incision
- Embeddedness
- Fish Passage Barriers
- Overbank flow
- Wetland vegetation
- Plant composition (x₃)
- Riparian buffer width
- Channel bed variability
- Lateral Migration
- Bank Erosion
- Bank Armoring
- Side Channels

What is a "Value"?

Values are determined by: 1) opportunity to provide a particular function, and 2) the local significance of that function

Value is the context of a function in the broader landscape.

Value measures often consider existing laws and designations (e.g. 303(d) listing, Wild and Scenic River designation), and rarity/local scarcity.

For many hydrologic and water quality values, opportunity is determined by what is upstream of a site (e.g., land use of the contributing basin, riparian buffers on the contributing streams) and significance is predicted partly by what is downstream (e.g., floodplains, water-quality limited water bodies, fish passage barriers).

Defining Stream Values

Value = the ecological and societal benefits that riverine systems provide The opportunity and significance of a site to provide these ecological functions

Function Group	Specific Functions/Values
	Surface Water Storage
Hydrologic	Sub/Surface Transfer
	Flow Variation
Goomorphic	Sediment Continuity
Geomorphic	Substrate Mobility
	Maintain Biodiversity
Biologic	Create and Maintain Habitat
	Sustain Trophic Structure
	Nutrient Cycling
Water Quality	Chemical Regulation
	Thermal Regulation

VALUE MEASURES (16):

- Rare Species
- Water quality impairments
- Protected areas
- Impervious area
- Riparian area
- Riparian continuity
- Downstream infrastructure
- Zoning
- Downstream flooding
- Impoundments
- Fish passage barriers
- Water source
- Land cover
- Watershed position
- Flow restoration needs
- Unique habitat features

How are function measures scored?

Standard performance indices were developed to translate measures' metrics (percentages, absolute values, ratios, etc.) into meaningful index values (scale of 0.0 – 1.0).

- Set a standard index scale (give ecological meaning to the scores).
- Look to literature, data and scientific understanding to determine the metric values that correspond with the set thresholds.
- 3. Draw linear models between thresholds.

How are function measures scored?

Standard performance indices were developed to translate measures' metrics (percentages, absolute values, ratios, etc.) into meaningful index values (scale of 0.0 – 1.0).

Development methods for the indices varied based on the quantity and type of information available:

METHOD 1

Substantial literature exists linking metrics to ecological functioning. Indices are based on trends and thresholds expressed in the literature. (6 measures) METHOD 2 In the absence of substantial literature, looked for an abundance of raw data (e.g. EPA NARS dataset) that could be used to set expectations. (5 measures) METHOD 3 In the absence of substantial literature or an abundance of raw data, relied on current scientific understanding of how metrics relate to functioning. (6 measures)

Example: Large Trees

What is the percent cover of large trees (dbh>20 inches) within the Proximal Assessment Area (PAA)?

Trends presented in the literature support stratifying expectations of large tree cover based on geographic position in the state.

Structure of Formulas

- Some measures are weighted more heavily than others (determined through iterative statistical analysis)
- Formulas for each specific function and value produce a numerical *score* between 0.0 and 10.0.

Functions:

- \rightarrow o.o = negligible function is being provided by the stream
- > 10.0 = stream is providing maximum function given certain contextual factors (e.g. ecoregion, stream size)

Values:

o.o = low opportunity for a site to provide a specific ecological function and, even if it did, the specific function would not be of particular significance given the context of the site
 10.o = site has the opportunity to provide a specific function and it would be highly significant in that particular location

Conducting an SFAM Assessment

Conducting an SFAM Assessment

Office Component		Со	Field mpone	nt	Evaluate Results
TREAM ASSESSMENT SCORES SHEET	r			version 1.0	
roject Area Name:					
vestigator Name:					
te of Field Assessment:					
itude (decimal degrees):		Longitude (decin	nal degrees):		
PECIFIC FUNCTIONS	Function Score	Function Rating	Value Score	Value Rating	
ace Water Storage (SWS)					
Surface Water Transfer (SST)					Each chacific function is
Variation (FV)					Each specific function is
ment Continuity (SC)					assigned a numerical
iment Mobility (SM)					assigned a nonnerical
intain Biodiversity (MB)					score and a rating for
ate and Maintain Habitat (CMH)					
tain Trophic Structure (STS)					both function and value
trient Cycling (NC)					
emical Regulation (CR)					
ermal Regulation (TR)					
	Function	Function	Value	Value	Groups are represented
ROUPED FUNCTIONS	Group Score	Group Rating	Group Score	Group Rating	by the highest-
drologic Function (SWS, SST, FV)					functioning, high <u>est-</u>
omorphic Function (SC, SM)					valued function in each
ologic Function (MB, CMH, STS)					valued function in each
LAND THE FORMER (NO CO TO)					

How can SFAM Improve the Mitigation Process?

- Encourage applicants to strive for high degree of avoidance and minimizat compensa
- Increase c
- Assist in d
- Inform mi
- Improve r
- Improve t

SFAM V1.o applicable to wadable, non-tidal streams.

Additional work is needed for non-wadable streams and tidal channels.

Implementation Challenges

- New assessment with overlapping regulation
- Understanding stream processes and assessment methods
- Internal procedures
- Credit/debit accounting
- Program effectiveness

Addressing Challenges

- Outreach and dialogue
- Training
- Prepare SOPs, QA/QC practices
- Protocols translating SFAM scores & CM plan components into mitigation requirements
- Program effectiveness monitoring program for stream mitigation

Challenges for Stream Mitigation Assessment

- Unit of impact/compensation acre? linear feet? other area-based unit?
- Accounting for partial impacts
- Concept of `self-mitigating'
- Urbanizing streams and water quality functions
- Accounting for longitudinal/latitudinal aspects of stream function in project-based assessment
- Knowledge gaps/research needs in stream science, including more rapid assessment protocols for aspects of stream function
- Assessment of large rivers/tidally influenced rivers

Additional SFAM Development Team Members

- ODSL: Dana Hicks, Charlotte Trowbridge
- Willamette Partnership: *Nicole Maness*
- CSS-Dynamac: Rob Coulombe
- ESA; Wolf Water Resources: Nicole Czarnomski

Additional SFAM Map Viewer Development Team Members

- Institute for Natural Resources/OSU: Myrica McCune, Marc Rempel, Jimmy Kagan
- ODSL: Charlotte Trowbridge, Dana Hicks

More Information

DSL:http://www.oregon.gov/dsl/WW/Pages/Aquatic-Resources-Mitigation-Framework.aspxOregon Explorer:http://oregonexplorer.info/topics/aquatic-mitigation?ptopic=38

Tracie Nadeau:nadeau.tracie@epa.govDana Hicks:dana.hicks@state.or.us