Session #4
Processes to Ensure NPS TMDLs are Implemented
State-Federal Relationship

Texas Perspective

TMDL Program in Transition
Designing NPS TMDLs for Implementation
May 27-28, 2009
Shepherdstown, WV
“…you're going to find that many of the truths we cling to depend greatly on our own point of view.”

– Obi-Wan Kenobi
Water Quality in Texas

• Texas Commission on Environmental Quality (TCEQ)
 – NPDES – WWTFs, CAFOs, MS4
 – CWA 305(b) & 303(d)
 – CWA 319(h) allocation

• Texas State Soil and Water Conservation Board (TSSWCB)
 – Agricultural & silvicultural NPS
 – CWA 319(h) allocation
Water Quality in Texas

- Texas General Land Office (GLO)
 - Coastal zone management
- Texas Department of Agriculture (TDA)
 - FIFRA
- Texas Water Development Board (TWDB)
 - Water supply planning
 - SRF
- Railroad Commission of Texas (RRC)
 - Oil & gas activities
- Texas Parks and Wildlife Department (TPWD)
 - primary responsibility for protecting state's fish and wildlife resources
- Texas A&M AgriLife
 - Land grant entity
 - Extension & Research
 - Texas Forest Service
NPS Management in TX

• TMDL
 – TCEQ, except where ag/silv NPS is involved, then also TSSWCB (MOU & MOA in place)

• NPS & 319(h)
 – Joint administration of NPS Management Program
 – Equally split state’s 319(h) allocation between TCEQ & TSSWCB

• Coastal
 – GLO passes 6217 responsibility to TCEQ/TSSWCB
TSSWCB

• Soil and Water Conservation Districts (SWCDs)
 – facilitate/coordinate local programs

• Agricultural & silvicultural NPS
 – Water quality management plans (WQMPs)
 • site-specific conservation plans that emphasize implementation of BMPs that can improve water quality, in accordance with NRCS Field Office Technical Guide
 – 503 cost-share
 – 319 ($4.5M) + State GR ($1.5M)

• brush control to enhance water supply
• Flood Control (PL-566 FRS)
• Invasive Species Coordination
Texas Conservation Partnership

- Providing Conservation Assistance to Private Landowners for 70+ Years

- **LOCAL**
 216 Soil & Water Conservation Districts (SWCDs)

- **STATE**
 Texas State Soil and Water Conservation Board (TSSWCB)

- **FEDERAL**
 U.S. Department of Agriculture Natural Resources Conservation Service (NRCS)
TMDL vs WBP

- Hard distinction between TMDLs & 319(h) WBPs
- TMDL + I-Plan
 - Regulatory, federally driven
 - ≠ WBP
- WBPs
 - Voluntary, locally driven
 - holistic
Aquilla

- TMDL for atrazine
 - TCEQ adopted March 2001, revised June 2002
 - TSSWCB approved September 2001
 - EPA approved October 2002
Aquilla

- Aquilla Reservoir in Brazos River Basin
- watershed 255 mi² (163,000 ac)
- Aquilla Water Supply District - reservoir is public drinking water sole-source for ~15k
- reservoir is 3,280 surface ac (45,962 ac-ft) at conservation pool elevation
Aquilla

- listed on 1998 303(d) List for failure to support public water supply use
 - “Atrazine concentrations in finished drinking water violate the MCL for primary drinking water standards. Origin of the contamination is source water and represents a failure of the waterbody to support the public water supply use.”
- MCL of 0.003 mg/L for atrazine in treated drinking water based on running annual average from quarterly sampling
- running annual average for 2nd ¼ 1997 through 1st ¼ 1998 was 0.004 mg/L
Aquilla

- **TMDL endpoint**
 - atrazine concentration of 0.003 mg/L, which is numeric equivalent of drinking water MCL
 - running annual average to be based on monthly sampling of ambient water from reservoir
 - concentration, not loading, based
 - however, using data set from 1998 MCL violation suggests load reduction of ~25% would result in attainment
 - TMDL = WLA (0%) + LA (100%) + MOS (implicit)
Aquilla

• I-Plan
 – TSSWCB approved January 2002
 – TCEQ approved January 2002
Aquilla

• TSSWCB 319 grant to AgriLife Extension
 – 5 sites equipped with ISCO samplers across watershed for stormwater monitoring
 – results indicated 99.97% of atrazine load originated from agricultural NPS while 0.03% originated from urban NPS
Aquilla

- **LULC**
 - 47% - pastureland
 - 30% - cropland
 - 16% - brushy & open rangeland
 - 3% - urbanized
 - 4% - open water
 - <1% - wetlands

- atrazine widely used since 1960s for selective control of broadleaf weeds in corn & grain sorghum
 - within Aquilla Reservoir watershed, application of atrazine to corn & grain sorghum occurs between late fall & early spring
 - inexpensive, effective herbicide with no alternative that is as economically viable

- application of weed & feed products (which contain atrazine) to urban lawns occurs periodically
Aquilla

• I-Plan called for
 – BMPs to be implemented to better manage corn & milo production areas
 • Hill County-Blackland SWCD & NRCS provided technical assistance
 • TSSWCB & NRCS provided financial assistance
 – Increased education & outreach led by AgriLife Extension (w/ TSSWCB & TCEQ 319)
 • Awareness of pesticide dealers that there was a water quality problem
 • BMP effectiveness demonstrations for corn & sorghum producers
 • general public & homeowners in urban areas
 • TAEX provided education, demonstration and training programs utilizing proven technologies in the area of water quality to assist residents of Hill County interested in environmental stewardship.
 • alternative lawn management & proper application/storage of herbicides through Master Gardeners & PSAs
Aquilla

- **phased approach to implementation** – benchmark timeframes to achieve TMDL
- TDA take primary role in pesticide law enforcement and regulation
- Phase I – July 2000, initiate technical and financial assistance
- BMPs from previous phase not effective if running annual average for atrazine continues to exceed MCL, therefore
 - Phase II – January 2005, TDA shall increase enforcement measures
 - Phase III – January 2009, TDA shall initiate regulatory procedures to reclassify atrazine as state-limited use pesticide
 - Phase IV – January 2011, TDA shall assume responsibility of regulating atrazine use as state-limited use pesticide
 - Phase V – January 2014, TDA will initiate procedures to cancel atrazine’s registration for use in Aquilla Reservoir watershed
Aquilla

- NRCS
 - $1.93M across FY1998-2003
- EQIP
 - 99 ac grass filter strips
 - 12,609 ac field borders
 - 3.5 ac riparian buffers
 - 196 ac grassed waterways
 - total 53,022 ac managed
- CRP & WRP
 - 300 ac cropland converted to wetland areas
Aquilla

- **TSSWCB**
 - WQMPs w/ 319(h) grant
 - 47,766 linear ft terraces
 - 781 ac cropland converted to hayland
 - 63 ac grassed waterways
 - 3 grade stabilization structures
 - 18 ponds
 - 4 water & sediment basins
 - additional 16,461 ac applied BMPs such as pesticide incorporation, banded application, conservation tillage, & crop residue management
Aquilla

- TSSWCB 319 = $1.6M (federal) + $1.2M (match)
 - TMDL development (inc. stakeholder facilitation)
 - I-Plan development (inc. monitoring)
 - BMP implementation (technical & financial assistance)
 - Outreach, education, demonstration
 - Post-BMP modeling
Aquilla

- efforts led to 60% decline in atrazine concentrations, far exceeding TMDL
- removed from 303(d) list for 2004 assessment
Aquilla

Legend
Atrazine Loading
Mg/ha Cropland
- 0
- 1-3000.5
- 3000.6-77446
- 77447-83086
- 83087-90701

Atrazine Loadings To Channels
Scenario 1 - Current Conditions

Atrazine Loadings To Channels
Scenario 2 - 319(h) BMP Applications
Aquilla

- Water quality restoration achieved
 - 319 success story
 - http://www.epa.gov/owow/nps/Success319/state/tx_aquilla.htm

- But, SWAT modeling showed that BMPs
 - at farm level, where they were implemented, reduced atrazine loadings from 70-100%
 - at subbasin level reduced atrazine loadings from 2-67%
 - at watershed level reduced atrazine loadings into Aquilla Reservoir by only 6%

- And however, 2008 305(b) report
 - 2 MCL exceedances out of 15 samples @ 3 different locations in reservoir
 - Don’t want to loose this success story
 - Need to do follow-up BMP implementation tracking & additional education/outreach? (= 319 to non-impaired waterbody?)
EV Spence

- TMDLs for TDS & sulfate
 - TCEQ adopted November 2000, revised June 2002
 - EPA approved May 2003
• E.V. Spence Reservoir in Colorado River Basin
• watershed 5,018 mi²
• Colorado River Municipal Water District - reservoir is public drinking water for ~305k
• reservoir is 15,893 surface ac at conservation pool elevation
EV Spence

• placed on 1998 303(d) List
 – sulfate concentrations exceeded criteria of 450 mg/L
 – TDS concentrations exceeded criteria of 1,500 mg/L
 – chloride concentrations approaching criteria of 950 mg/L

• since 1992, water quality in reservoir has continued to deteriorate, partly due to most severe drought conditions region has experienced since reservoir began impounding water in 1969
EV Spence

- TMDL endpoint
 - achieve and maintain segment-specific standards for sulfate & TDS, i.e. 450 and 1,500 mg/L, at least 80% of the time
 - load reduction scenario also expected to mitigate the recent increases in reservoir chloride concentrations

- TMDL = WLA (10%) + LA_{nat} (50%) + LA_{man} (40%)
 - ~39% reduction in 80^{th} percentile TDS & sulfate concentrations
• **Source ID**
 - Discharges from 2 WWTFs
 - Leaking oil wells (total production in 1998 in watershed was nearly 18M barrels)
 - Historic, unlined brine pits (in one county in watershed in 1961, 3.7M barrels were placed in pits)
 - Brine injection wells (41M barrels in 1987)
 - Abandoned industrial magnesium plant (frequently documented unauthorized discharges of high saline water from storage ponds)
 - Groundwater dissolution of natural mineral deposits & surface water moving across salt flats
 - Proliferation of invasive phreatophytic brush (saltcedar)
EV Spence

• I-Plan
 – TCEQ approved
 August 2001
• I-Plan components
 – Revision of Municipal Discharge Permits
 – Modifications of Reservoir Operations (Release & Diversion Management)
 – Well Plugging Program
 – Weather Modification
 – Remediation of Magnesium Plant Site
 – Targeted Brush Control
EV Spence

- **TCEQ 319 to RRC**
 - Properly Plug 171 Abandoned Oil & Gas Wells
 - Assessment of 2 Oil Field Seeps
 - Assessment of Historical Oil Field Brine Pits
 - Monitor & Analyze Data
EV Spence

- Phased, targeted brush control (TSSWCB 319 + state GR)
 - estimated increase in water yield of 3,843 ac-ft per yr to EV Spence
 - chemically treat (aerial application of Arsenal) saltcedar in 150 ft corridor along Colorado River & its major tributaries
 - estimated that 95% of all saltcedar in watershed exists within these riparian areas
 - Needed Section 24(c) “Special Local Needs” Label due to adjacent habitat for Texas poppy-mallow (endangered species)
 - estimated life of one-time chemical treatment is approximately 15 years, so implemented biological control follow-up treatment using Chinese leaf beetles (*Diorhabda elongata*) [USDA-ARS]
• Over 3 years of spraying, chemically treated 11,391 ac of saltcedar along Colorado River, major tributaries & EV Spence lake basin

• $319 = $2.6M (federal) + $1.6 (match)
South Central TX Bacteria

• ~840 waterbody-pollutant combinations on 2008 303(d), nearly 50% are for bacteria

• Lower San Antonio River, Peach Creek, Elm & Sandies Creeks, and Atascosa River
 – in San Antonio River Basin, Guadalupe River Basin, and Nueces River Basin

• development of these TMDLs initiated several years ago (some adopted, some converted to UAA)
South Central TX Bacteria
South Central TX Bacteria

- To get a jump on implementation, in 2005, TSSWCB & TCEQ worked with NRCS & STAC to establish EQIP State Resource Concern for Water Quality in South Central Texas.
- Directed toward protection of streams impacted by bacterial contamination from livestock for implementation of BMPs such as cross-fencing, water wells, riparian buffers, watering facilities, and prescribed grazing.
- FY2006-2008, NRCS has allocated $2.9M for this State Resource Concern.
South Central TX Bacteria

- TSSWCB 319 $850k (federal)
- Technical Assistance Supporting Cooperative Conservation in South Central Texas
- 4 SWCDs taking lead in providing technical assistance to livestock operators in target watersheds, cooperating with 13 adjacent SWCDs
 - provides for support of 4 SWCD technicians who are assisting cattlemen in developing and implementing WQMPs
 - technicians are critically important in promoting EQIP cost-share availability, and encouraging participation from livestock producers
 - technicians also work with AgriLife Extension to educate ranchers about water quality issues and how WQMPs and BMPs address bacterial contamination from livestock
 - technicians work with cattlemens’ organizations to educate their members on this opportunity to jointly enhance the value of their operation and achieve water quality goals
Perspective

• Relationship between TCEQ, TSSWCB, EPA and NRCS is working in Texas
• Voluntary implementation of ag/silv NPS is tending towards water quality restoration success in Texas
• TSSWCB frequently plays on-the-ground intermediary between EPA and NRCS
Watershed Planning Short Course

- Instruction for watershed coordinators in developing 9-element WBPs
- Bandera, TX
- August 17-21, 2009
- http://watershedplanning.tamu.edu/