Residential Renewable Energy: By Whom?

Professor Joel B. Eisen University of Richmond School of Law Vanderbilt Law School February 23, 2012

"Someone has got to do for solar installation what Apple did for the cellphone: make it so simple that even an astrophysicist could do it."

"Disruptiveness" and Residential Solar PV

* "S-curve" of technology adoption: at "takeoff" point more than early adopters buy in, but resistance until then

How do we get past here??

"Disruptiveness" and Residential Solar PV

- * Can residential solar be "disruptive": substantially displace existing technology?
 - * Example of fax machine = "can't live without it" (now itself being displaced by e-mail/PDF)
 - * Solar has advantages that fossil fuel-fired generation does not: less expensive power over long term, reliability (although intermittency still a concern)

* Not a technology development problem = "tipping point"/more efficient PV panels

Suppose that instead of having cars, millions of households had "Personal Mobility Vehicles" (PMVs) and car builders were small firms trying to market their products. . .

* Who would buy a "car" instead of a "PMV"?

Cars:

Built by hand (custom builders) No network of dealers No nationwide promotion Small track record of industry

PMVs:

Every suburban household has one (including your neighbors)
Widely available (dealers, alternative channels, advertising)
Easy financing/low transaction costs
Industry subsidization lowers
perceived cost to consumers

Only early adopters would buy cars if both furnish "transportation"; to succeed more broadly, a car would have to be a "disruptive" technology with different attributes

- * Solar panels are "cars":
- * Utilities have considerable direct and indirect subsidies that dwarf anything offered currently to solar power firms
- * Financial subsidies
- * Regulatory subsidies (system designed for them, familiarity over decades, etc.)
- * Political subsidies (protection from failure by legislatures, etc.)
- * Use of existing infrastructure (no 2d line to houses)
- * >>> Laissez faire attitude toward growth of the solar industry is unlikely to surmount these obstacles and lead to a critical mass of solar deployment

Survey in 6 metro areas done for this project

Areas selected for different criteria: receptiveness of state to solar, regulated/deregulate d, amount of installed solar capacity, etc.

Table 1: Price Quotes Received For Average Solar PV Systems, Nationwide

Metropolitan Area	Average Home Size (sq. ft.)	Price Quote (system size)	Net Price After Incentives	Notes
Los Angeles, CA	2,487	\$22,000 (3 kW)	\$9,900	
Jacksonville, FL	1,561	\$30,000 (5 kW)	Not quoted	Calls to 2d installer were not returned
Newark, NJ	1,901	\$60,000 (6 kW)	Not quoted	6 kW system claimed to reduce monthly electric bill by \$100; 2d installer would not provide price quote
Albuquerque, NM	2,142	\$23,633- \$46,747	\$14,180- \$28,078	2d installer provided similar quotes
Memphis, TN	2,136	\$8/kW (~\$48,000 at 6 kW size)	Not quoted	2d installer quoted \$60,000 for a 6 kW system
Norfolk/Virginia Beach, VA	1,553	No price quote	Not quoted	

- * High initial cost (\$15,000 or more) outweighs any perceived future benefits: studies show consumers discount future benefits (rational because homeowners move every 3-5 years)
- * Hassle factor: have to be a "general contractor"
 - *"[COMPANY REPRESENTATIVE] also identified that they must perform a site visit to confirm the estimated price on retrofit installations a site analysis is necessary to determine a hard bid to see if there are any unforeseen circumstances such as 'having to trench for the conduit runs."
- * Operating and maintenance responsibilities

Compare: cable/satellite TV – low initial cost; can be done in 1 day/homeowner not responsible for selecting installer

1st Challenge: High Upfront Cost

System cost <u>after</u> credits/rebates can be as much as \$10,000 or more

"Generally speaking [COMPANY] is around \$5.80 per watt for most residential systems, and a general system size is 3000watts or 3kWs.* That puts the general system estimate at around \$17,400 before any tax credits and that size of system will supply approximately 460kWh's per month."

*Larger and more expensive systems were quoted as well.

1st Challenge: High Upfront Cost

- * Solution = PPA-like agreement or lease
- * Little or no upfront cost; compare cell phone hardware subsidized by carrier
- * Provider bears cost, recoups over time

2d Challenge: Significant Transaction Costs

What System Should I Use?

Research

Requires technical sophistication

Who Will Install It?

More Research

Technical and legal know-how: permitting requirements of HOA, etc.

How Will I Pay For It?

More Research

Financial acumen: find and compare tax credits, rebates, other financing; estimate benefits

2d Challenge: Significant Transaction Costs

- * Solution: one entity handles installation, financing, engineering
- * Streamlined process, technical aspects transparent to consumer
- * Compare: do not have to know trenching requirements before signing up for cable TV

3rd Challenge: Dealing with Multiple Decision-Makers

3rd Challenge: Dealing with Multiple Decision-Makers

- * Solution: provider handles these tasks
- * More likely to have/develop financial/legal expertise
- * Compare: cell phone companies, cable companies

4th Challenge: No Economies of Scale

- * Complex regulatory, engineering, financial tasks
- Historically decentralized industry
- * Solution: experience with multiple installations = lower transaction costs

Do Existing Incentives Foster Movement on the "S-Curve"?

- State/Federal Tax Credits/Incentives
- * Feed-In Tariffs (FITs)
- Property Tax Financing (PACE)
- * Power Purchase Agreements (PPAs)

Do Existing Incentives Foster Movement on the "S-Curve"?

- * 5 criteria for widespread diffusion:
 - * Availability of regular organizational channels
 - * Understanding of the technology
 - * Salience to individual making decision
 - * Support system (for maintenance etc.)
 - Financial ability to make decision

Only the 5th of these is addressed in a meaningful way by existing incentives

State Income Tax Credits & Deductions for Renewables Puerto Rico State offers only Personal Tax Incentives State offers only Corporate Tax Incentives State offers only Corporate Tax Incentives State offers only Corporate Tax Incentives Source: Database of State Incentives for Renewables & Efficiency (DSIRE), December 2008

Figure 4. State income tax credits and deductions for renewable energy

Tax Credits/Financial Incentives (Rebates)

- * Pay only part of cost = do not solve upfront cost problem
- * Typically recouped <u>after</u> initial investment

Tax Credit: 30% of cost with no upper limit

Expires: December 31, 2016

Details: Existing homes & new construction qualify. Both principal residences and second homes qualify. Rentals do

not qualify.

Geothermal Heat Pumps

Small Wind Turbines (Residential)

Solar Energy Systems

Federal tax credit: 30%, no cap on system cost (ARRA removed cap)

Feed-In Tariffs (FITs)

- Payment per kWh for electricity generated from renewable sources (e.g., VermontSPEED)
- * Pays for power, doesn't pay system cost (although makes financing easier)
- * Increases electricity prices for all consumers: can be politically difficult
- * Preemption by federal law/permissible under PURPA only if related to "avoided costs"/level of subsidy limited

Property Tax Financing (PACE)

- * Special assessment district = need new one in every city
- * Bonds issued to cover cost
- * Homeowners apply for 100% financing = no upfront cost
- BUT: repayment in full through increased property taxes;
 obligation may not run to new owner (state property law)
- * Cities may not have expertise, political will, & resources to create districts/administer programs
- * Ongoing Fannie Mae/Freddie Mac dispute limits viability

Power Purchase Agreements (PPAs)

Power Purchase Agreements (PPAs)

- * Company installs equipment
- Host pays for electricity
- * Not generally considered viable in residential setting = most PPAs to date have been governments, universities (Smith College), large companies (Walmart, Whole Foods, Kohl's)

Borrego Solar/Community Energy 130-panel system on Smith College's Campus Center (2009)

One Proposal: "Solar Utility"

- * One company
- * Handles all tasks from installation through service and billing
- * PPA-like model/government charter

Government Selection of Participants

- * Dates to 1800s and Charles River Bridge
- * "Regulatory compact": protection from competition with rate regulation stimulates industry development; introduce competition later
- * Careful design to avoid monopoly rent

Government Selection of Participants

1981-1991: FCC lottery assigns "A" (new entrant) and "B" (wireline) cellular licenses; required build out within 5 years

Solar Utility Revenue Stream

- * Consumer pays for electricity (like a PPA)
- Utility owns the system
 - * Qualifies for tax credits and incentives
- Utility may own RECs
 - * Depends on interpretation of state law

Rate per kWh

Tax credits

EX RECs

What About the Smart Grid??

Smart grid company: views panel as one of many services/products offered

"You wouldn't want those houses" (1993)

Testing Important Assumptions

- * Market Structure: Is a monopoly structure necessary?
- * Financial viability: Would companies enter market/survive/prosper?
- * What about incumbent utilities? = disruptiveness theory suggests they will NOT do this

The 1977 Grumman (yes, THAT Grumman!) Ad-Sunstream Solar Water Heater!

Concluding Thoughts: Going Beyond the Status Quo

- * These challenges should not deter us from making solar installations high volume transactions
- * "Disruption can take decades if independent disruptive companies rely on other disruptive companies"

Time to get to work on this . . .

